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Abstract

Nowadays, we encounter new fields of application of artificial intelligence every day,

ranging from chatbots that give sophisticated, more human-like responses than ever

before, to predicting the future value of corporate stocks, and even machine-written

software source codes.

Still, the greatest and most basic need is to put the amazing capabilities of this new

– and truly promising – area of computer technology at the service of human life and

health.

This dissertation provides an example of this by predicting the short-term and long-

term chances of death of patients who have suffered a heart attack. During the research,

the motivation was given by the fact that, knowing the result of the forecast, the attend-

ing physician can set up a more personalized treatment for the patients.

The first group of theses deals with the international and Hungarian heart attack

registers, followed by a solution for using the Hungarian register as an input dataset

for artificial intelligence algorithms.

The second thesis specifically deals with the exact results of machine learning mod-

els, which infer regularities from three years of complete, unfiltered heart attack cases

in Hungary. The published models achieved, and in some cases even exceeded, the pre-

dictive capabilities of regression generally (and rightfully) accepted in the field – thus

demonstrating the raison d’être of machine learning solutions in the current scientific

field and in the Hungarian register.

The third thesis presents a more specific result: I investigated whether there is

a difference in the predictive power of the decision tree models tuned with different

resampling methods on the data of the Hungarian register. The results of the thesis can

serve as a basis for further researches.
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Absztrakt

Napjainkban szinte minden nap találkozunk a mesterséges intelligencia egy-egy új

alkalmazási területével, kezdve a minden korábbinál kifinomultabb és ”emberibb”

válaszokat adó chatrobotoktól, a részvények értékének előrejelzésén át akár a szoftvereket

alkotó programkódok gép által történő megı́rásáig.

Mégis, a legnagyobb és legelemibb szükség abba az irányba mutatkozik, hogy a

számı́tástechnika ezen új – és valóban sokat ı́gérő – területének bámulatos képességeit

az emberi élet és egészség szolgálatába állı́tsuk.

Jelen disszertáció erre ad példát szı́vinfarktuson átesett betegek rövid és hosszú

távú halálozási esélyeinek előrejelzésével. A kutatás során a motivációt az a tény adta,

hogy az előrejelzés eredményének ismeretében a kezelőorvos személyre szabottabb

kezelést tud felállı́tani a pácienseknek.

Az első téziscsoport a nemzetközi és magyarországi szı́vinfarktus regisztereket

veszi sorra, majd megoldást ad a magyar regiszter adatainak mesterséges intelligen-

cia algoritmusok bemeneti adathalmazaként történő alkalmazására.

A második tézis már kifejezetten a gépi tanulási modellek eredményeivel foglalkozik,

amelyek három évnyi, teljes, szűretlen, Magyarország területén történt szı́vinfarktusos

esetből következtetnek szabályszerűségekre. A publikált modellek elérték, sőt, bi-

zonyos esetben meg is haladták a területen általánosan (és jogosan) elfogadottnak

tekinthető regresszió előrejelző képességeit – ezzel demonstrálva a tudományterületen

és a magyar regiszteren a gépi tanulási megoldások létjogosultságát.

A harmadik tézis pedig egy specifikusabb eredményt közöl: azt vizsgáltam a mag-

yar regiszter adatain, hogy van-e különbség a különböző újramintavételezési módszerekkel

hangolt döntési fa modellek prediktı́v erejében. A tézis eredménye további kutatások

alapjául szolgálhat.
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1 Introduction

1.1 Importance of myocardial registries and mortality prediction

In Heart Disease and Stroke Statistics, American Heart Association annually reports,

that approximately every 40 seconds, an American will have an myocardial infarction

(MI) - they did the same in the recent statistics titled 2022 Update [1].

In addition, Heart disease (which can lead to myocardial infarction) is still at the

first position of the ten leading cause of death, followed by cancer, unintentional in-

juries, chronic lower respiratory diseases, stroke and Alzheimer disease, respectively.

In the recent decades a decline is seen in coronary heart disease mortality [2]. Re-

searches found that there is a difference in the decline based on the socioeconomic

background of the patients [3][4]. For instance, the group of less educated people

shows a smaller decrement. On one hand, the decline in coronary heart disease mor-

tality can be one of the major significance of public health and a result of the new

methods of treatment. On the other hand, more accurate and more complete informa-

tion is needed to confirm such statements – because cardiovascular disease continues

to be one of the most common cause of death in both men and women.

In the area with numbers like these, mortality prediction can and should play a very

important role in the hand of physicians: with validated models, it becomes possible

to select patients with high-risk of death and use this information in the process of

treatment. Using new, real-life datasets to extract hidden information can lead to more

effective treatment and prevention. As US surgeon Dr. Ernest Amory Codman sug-

gested: ”Every hospital should follow every patient it treats long enough to determine

whether or not the treatment was successful and to inquire ‘if not, why not?’ with a

view to preventing similar failures in future.” [5]

Reliable, high-quality datasets are mandatory to build and train any type of pre-

dictive model. Hungarian Myocardial Infarction Register (HUMIR) project was intro-
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duced in 2010, initially collected AMI information only from five districts of Budapest

and the county of Szabolcs-Szatmár-Bereg. In 2014, the Hungarian government se-

lected it as the official myocardial database and obligated all hospitals in the territory

of Hungary to report all MI-cases to HUMIR. In the recent years, around 15,000 new

patients got registered per year and until December 2022, the 94 participating hospitals

reported 157,724 cases in 142,439 patients. In all my related publications and theses I

used a dataset from HUMIR to predict the mortality of patients hospitalized with acute

myocardial infarction.

1.2 Aims of the research

Nowadays, most of the countries have their own mortality and disease statistics based

on International Classification of Diseases – however, these statistics never contain

clinical informations, for example results of former examinations, comorbidity or

smoking behavior of the patients. Several databases store information about patients

and diseases, but only a few system exists that focuses directly on myocardial events

and treatments. My first aim was to collect these systems and to take advantage of

the opportunities offered by the Hungarian register with developing the solution which

turns the registers’ raw data into an input data of machine learning algorythms.

Then, in my researches I developed several machine-learning models based on De-

cision Tree (DT), Neural Networks (NN), Logistic Regression (LR), Random Forest

(RF), Generalized Boosted Model (GBM) and Ensembled algorithms to predict 30-day

and 1-year mortality on the same, real-world, unfiltered dataset originated from HU-

MIR. The results achieved with these methods were published in several conferences

and papers. The main question I was facing was if there is a competitive opponent for

the mostly used and trusted regression in the world of machine learning algorithms.

The idea behind the approach that I was working on the same dataset in all the

connected researches is the following: I was trying to establish an order in the list of
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different modelling techniques by keeping the dataset fixed and trying to maximize the

prediction capability of each of our models.

1.3 Clinical introduction

My theses are built around acute myocardial infarction, so in this section I will high-

light some general clinical information about the term.

As Cleveland Clinic summarizes MI itself, [6], it is ”a condition that happens be-

cause of a lack of blood flow to one’s heart muscle. The lack of blood flow can occur

because of many different factors but is usually related to a blockage in one or more

heart’s arteries. Without blood flow, the affected heart muscle will begin to die. If

blood flow isn’t restored quickly, a heart attack can cause permanent heart damage and

death.” The most common symptom is chest pain or discomfort which may travel into

the shoulder, arm, back, neck or jaw [7].

Acute myocardial infarction (commonly called a heart attack) remains a leading

cause of morbidity and mortality worldwide, despite substantial improvements in prog-

nosis over the past decade [8].

The statistical characteristics of MI also speaks volumes: as Heart Disease and

Stroke Statistics reports [1], the estimated annual incidence of MI is 605,000 new at-

tacks and 200,000 recurrent attacks in the US. The overall prevalence for MI is 3.1%

in US adults (>19 years of age). Males have a higher prevalence of MI than females

for all age groups except 20 to 39 years of age. MI prevalence is 4.3% for males and

2.1% for females.

Since the following terms are not just present in the current study, but they also

appear in the dataset of HUMIR, here I quote a definition and some descriptive infor-

mation for each registry field:

1. Heart failure Heart failure means your heart isn’t able to pump blood as well

as it should. When your heart has less pumping power, that can damage your
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Figure 1.1: Heart attack - Illustration, Source: Cleveland Clinic

organs and fluid can collect in your lungs. Heart failure is the leading cause of

hospitalization in people older than 65. [9]

2. Hypertension High blood pressure (hypertension) is the measurement of the

pressure or force of blood pushing against blood vessel walls. When one has

hypertension (high blood pressure), it means the pressure against the blood ves-

sel walls is consistently too high. [10]
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3. Stroke A stroke happens when part of one’s brain doesn’t have enough blood

flow. This most commonly happens because of a blocked artery or bleeding in

the brain. Without a steady supply of blood, the brain cells in that area start to

die from a lack of oxygen. [11]

4. Diabetes mellitus Diabetes happens when your body isn’t able to take up sugar

(glucose) into its cells and use it for energy. This results in a build up of extra

sugar in your bloodstream. [12]

5. Peripheral artery disease Peripheral artery disease (PAD, peripheral vascular

disease or peripheral arterial disease) is plaque buildup in one’s leg arteries, so

the leg arteries cannot carry oxygen and nutrient-rich blood from the heart to the

arms and legs. [13]

6. Hyperlipidaemia Hyperlipidemia, also known as dyslipidemia or high choles-

terol, means you have too many lipids (fats) in your blood. Your liver creates

cholesterol to help you digest food and make things like hormones. But you also

eat cholesterol in foods from the meat and dairy aisles. As your liver can make

as much cholesterol as you need, the cholesterol in foods you eat is extra. [14]

7. Cardiogenic shock Cardiogenic shock is a serious condition that happens when

one’s heart can’t supply enough oxygen-rich blood to the body to meet its needs.

It can be fatal when a lack of oxygen causes the organs to fail. [15]

2 Methods and tools of investigation

2.1 Methodologies

In the area of data mining, a well-known methodology called CRISP-DM exists which

summarizes the main stages and questions of a given project, hence, serves as a base for
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the whole process. Although this process model was released decades ago, the aim of

the fives developers (Integral Solutions Ltd, Teradata, Daimler AG, NCR Corporation

and OHRA) succeed: in the 2020s the process model is still used and became the base

of other process models as well.

Although other methodologies exist, for example: TDSP (Team Data Science Pro-

cess) and KDD (Knowledge Discovery in Databases), here I list two reasons next to

my decision:

1. there are no essential differences between these and CRISP-DM: even the offi-

cial documentation of TDSP declares too, that, ”at a high level, these different

methodologies have much in common” [16]

2. usage statistics reports [17] that CRISP-DM is still 4-5 times popular and more

often used than any other framework

CRISP-DM stands for Cross-industry standard process for data mining. It defines

the six sequential phases of a data mining project and also describes the main ques-

tions and tasks that the developers have to ask and solve to have a bigger chance of a

successful data mining project, regardless of the exact area we are working on.

As I used CRISP-DM as process framework for all our researches, here the main

findings and phases of the methodology are listed. The fix phases, with some remarks

as it was summarized by the authors of [18], are the follows:

1. Business understanding: understanding the project objectives and requirements

from a business perspective, and then converting this knowledge into a data min-

ing problem

2. Data understanding: initial data collection, get familiar with the data, to identify

data quality problems, to discover first insights into the data
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Figure 2.1: CRISP-DM methodology: Phases and connections

3. Data preparation: covers all activities to construct the final dataset, which will

as the input of our modelling tools

4. Modeling: selecting the right modeling techniques, algorythms and their param-

eters

5. Evaluation: evaluate the model, review the steps executed to construct the model,

to be certain it properly achieves the business objectives

6. Deployment: the knowledge gained from the dataset need to be organized, pre-

sented and built back into the original (business, health) environment

As Figure 2.1 shows, CRISP-DM clearly defines the sequential processes and its

relations.
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2.2 Measurement

In the studies, I used area under the Receiver Operating Characteristic (ROC) curve,

or simply ROC AUC as a single-number measure for evaluating performance of a

learning algorithm. Several other metrics could have been used, here are the two most

important reasons behind the selection of ROC AUC:

1. Literature recommendation: in several papers conclusions’, ROC and ROC AUC

have been presented as a recommended metric on real-world, imbalanced datasets.

For example, Huang et al. [19] proved that AUC is – in general – a better mea-

sure than accuracy. Bradley [20] found that AUC has several desirable properties

compared to accuracy.

2. Consistency: my earliest publication on the current topic was published with

models described with ROC AUC. To be comparable with all the previous sci-

entific results, I constantly applied this value.

F1-score, as the harmonic mean of precision and recall or even Precision-Recall

AUC could have been used too through the whole research to describe the performance

of each model - this could be a future research topic.

ROC curve is a graph which visually shows the performance of a classification

model with binary target variable. The name ROC is coming from the history: orig-

inally, it was designed for operators of military radar receivers in World War II – but

today it is highly used in almost any sectors from medicine to meteorology, including

data mining researches.

As all the other classification metrics, a ROC curve can be generated by calculating

the Confusion matrix. Confusion matrix is a table which summarizes the performance

of a classification algorithm in a way that it shows the actual values against the pre-

dicted values. In a binary classification problem, the Confusion matrix is a 2x2 table

as can be seen on Figure 2.2.
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Figure 2.2: Confusion matrix with a binary target variable, by definition

The True Positive Rate and the False Positive Rate at various threshold values build

up ROC AUC. True Positive Rate can be called sensitivity or recall as well and can be

calculated with dividing the the Nr. of True Positives with all the actual positives

(the sum of Nr. of True Positives and Nr. of False Negatives). By definition, this

value represents the probability of detection. False Positive Rate is also known as

probability of false alarm because its calculation is the following: dividing the Nr. of

False Positives with all the actual negatives (the sum of Nr. of False Positives and Nr.

of True Negatives).

2.3 Software environment

Statistical analysis, data preparation, modelling and visualisation were all principally

performed under the R statistical language [21], version 3.6.1. Table 2.1 summarises

the used packages for given machine learning models.

For resampling and training the models, I used Caret [28] package; and to deal

with missing data and imputation, mice [29] package was applied.
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Table 2.1: R packages and their references used to train machine learning models

Decision tree Rpart [22]

Neural network Nnet [23]

Regression rms [24]

Random forest randomForest [25]

Generalized Boosted Models GBM [26]

Ensembled caretEnsemble [27]

R is a system for statistical computation and graphics. It provides, among other

things, a programming language, graphics, interfaces to other languages and debug-

ging facilities [30]. It is an open source project and available under GNU General

Public License.

The R language was developed in the early 1990s as a dialect of the S statistical

programming language. As the official manual writes, ”the language syntax has a

superficial similarity with C, but the semantics are of the FPL (functional programming

language) variety with stronger affinities with Lisp and APL”.

In R, the basic functionality is in-built, but to work on specific areas like on the

machine learning domain, the functions come from third-party libraries called pack-

ages. In the January of 2023, over 19,000 packages are available from ’Analysis of

Numerical Plankton Images’ to ’Analyze Text, Audio, and Video from ’Zoom’ Meet-

ings’. These cover almost each and every area of modern statistics and data mining,

including the most recent areas like the package which deals with ’Access to TikTok

Ads via the ’Windsor.ai’ API’.

As by default, R has no graphical user interface, I used [31] as an integrated devel-

opment environment (IDE). To reproduce our researches, it is not necessary to have an

IDE, but with its features (syntax-highlighting, direct code execution, tools for plot-

ting, history, debugging and workspace management) [31] makes development and

source code management easier.
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2.4 Hardware environments

During the investigation, I had two different hardware environments and configura-

tions:

1. Normal configuration with the following resources: Intel Core i3 processor (i3-

4030U CPU 1.90 GHz), 12 GB memory, no SSD. This environment is my per-

sonal laptop, and it was used in the early publications connected with Logistic

regression, Decision tree and Neural network.

2. Extended configuration is a cloud-based architecture powered by Amazon Web

Services with EC2 instances1. It had the following parameters: 16 vCPU, 70

ECU, 64 GB memory (m5.4xlarge configuration). I used the On-Demand method,

i.e. you pay for the compute capacity by the hours the instance runs. (For

m5.4xlarge, it is $0.92 / hour in the Europe / Frankfurt region.) This environment

was applied with the latest researches and models like Random forest, General

Boosted Model and Ensembled.

During the investigation, I experienced that, on this size of dataset, the normal

configuration was not suitable for latter models. For example, the neural network

training times were around 5 hours with the normal, and 25 minutes with the extended

configuration.

The different hardware configurations don’t have effect on the models’ perfor-

mance or their prediction power (i.e. the hardware doesn’t modify the underlying

algorithms), only the training times got less with the cloud-based option.

1Amazon EC2: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
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3 Improving mortality prediction

In this section I present in detail the individual phases of the research and in this con-

text I highlight the new scientific results. First, I review the the Hungarian Myocardial

Infarction Registry in general; list the ongoing, official registries that collect cardio-

vascular data; then highlight the tasks related to data preparation of the dataset.

Then, in the second thesis, I list the machine learning models and their results,

which I developed in order to achieve progress in the 30-day and 1-year mortality

forecast compared to regression, which is considered a classic solution in this area.

And finally, in the third thesis another branch of the research is presented in which

I investigated the differences between the resampling methods used to determine the

tuning parameters in case of decision trees.

3.1 Registry overview & Data preparation (Thesis group 1)

3.1.1 Introduction

Nowadays, most of the countries have their own mortality and disease statistics based

on International Classification of Diseases – however, these statistics never contain

clinical informations, for example results of former examinations, comorbidity or

smoking behavior of the patients. Several databases store information about patients

and diseases, but only a few system exists that focuses directly on myocardial events

and treatments.

The common vision behind such registries is the more specific the information we

collect, the better quality control we can have. Thus, the quality of the treatment and

then the prognosis of the patients improve.

In this section, I introduce Hungarian Myocardial Infarction Registry (HUMIR)

registry; review the changing of the legal environment; show the completeness and

validity, and, finally, overview some research results that were obtained using the data
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collected.

In Section 3.1.3, I list three other ongoing European myocardial projects as well.

3.1.2 Hungarian Myocardial Infarction Registry

The history

In the 1970s, World Health Organization (WHO) started a global investigation on

acute myocardial infarction registries [32]. Hungary participated in the project with

the South Pest Myocardial Infarction Registry [33], which was a paper-based system

covering all patients who had acute myocardial infarction (AMI) in six districts of

Budapest (affected 373 269 inhabitants [34]). The program made it possible to measure

the incidence rates of AMI and the pre-hospital, in-hospital and 1-year mortality rates

[35].

Based on the monitoring system, a new patient care system called Myocardial In-

farction Patients’ Care in CCU also started. The results were published almost a decade

later [36]. The improvement on survival is significant, as shown in Table 2.1.

Table 3.1: Mortality rates in 1971 and 1979 in South Pest

Results - 1971 Results - 1979

Admitted to Coronary Care Unit 7,8% 57,1%

Pre-hospital mortality 30,5% 25,1%

28-day-mortality - Pre- and in-hospital cases 51,7% 41,5%

In the next decades the diagnostic criterias, the clinical forms, and the optimal

care strategies have significantly changed the physicians’ knowledge about AMI. In

addition, physicians faced some other challenges as well:
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1. the current International Statistical Classification of Diseases and Related Health

Problems (ICD-10) does not separate the two clinical forms of AMI: ST-segment

(STEMI) and Non–ST-segment (NSTEMI) elevation myocardial infarction (un-

like NSTEMI, in case of STEMI, a part of the electrocardiogram wave, the ”ST”

segment, rises higher than normal)

2. therefore, the hospital and finance databases are not capable to investigate the

treatment of AMI

3. the frequency of catheter-directed therapy of STEMI is not known

4. the 28-day and 1-year mortality information is not available

5. the frequency of drugs in the secundary prevention is also not known

As a consequence of the all these deficiencies, a need for a new infarction registry

system arose. In January 1, 2010, a web-based system was introduced to collect AMI

information from five districts of Budapest and the county of Szabolcs-Szatmár-Bereg

[37].

Legal background

Until 2013, the transfer of the data was voluntary for the hospitals and was based on

the patients’ full, written informed consent. In Januar 1, 2014 a new legal environment

changed this situation. As Hungarian Gazette writes [38], ”Diagnosing a myocardial

infarction, the patient care doctor is forwarding the patient’s identity and healthcare

data, concerning the myocardial infarction, to the National Registry of Myocardial

Infarction”. At this point, it became mandatory for hospitals to report each and every

MI-case to the registry.

Table 3.2 summaries the essential stages of the Hungarian registry.
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Table 3.2: Essential stages of the Hungarian Myocardial Infarction Registry

Stage Data transfer Date

Research plan 08.07.01 - 09.12.31

IR Pilot Investigation voluntary 10.01.01 - 11.12.31

HUMIR voluntary 12.01.01 - 13.02.28

HUMIR obligatory 13.03.01 - 13.12.31

HUMIR legal regulations 14.01.01 - present

In the recent years, around 15,000 new patients got registered per year and un-

til December 2022, the 94 participating hospitals reported 157,724 cases in 142,439

patients.

Changing of completeness and data validation (2011-2016)

Table 3.3 contains the number of patients registered in HUMIR and the complete-

ness of the stored data.

Completeness is a ratio and calculated on the proportion of two numbers: the num-

bers of patients treated with AMI originated from National Health Insurance Fund of

Hungary (the central official organ of health insurance, supervised by the Government

of Hungary; Hungarian acronym: OEP); and the numbers of patients registered by the

hospitals in HUMIR.

Researches and results based on HUMIR

In the last few years, the data of HUMIR has been used in several researches to

extract new results. In the followings, a few examples are listed.

A research reported that between 1st of January 2010 and 1st of May 2011 4293

patients were registered, among them 52.1% with STEMI, 42.1% with NSTEMI, while
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Table 3.3: Completeness of the registered data in HUMIR

Year Nr. of Patients (HUMIR) Completeness of data (HUMIR)

2010 2407 below 30% (voluntary period)

2011 6877 below 30% (voluntary period)

2012 7550 appr. 30% (voluntary period)

2013 7828 51%

2014 10458 67%

2015 12536 82%

2016 13843 83,9%

3% of the patients had unstable angina (a type of acute coronary syndrome), and 2.8%

of the cases had other diagnosis or the hospital diagnosis was missing [39].

In the year of 2010 and 2011, 4981 patients (3038 men) were included in the

database. The target of the research [40] was to compare the clinical data and progno-

sis of patients with STEMI in that years. Women were significantly older (67.7±13.5

vs. 60.5±12.5 years; p<0.001). Hypertension, diabetes, and stroke were more fre-

quent among women, whereas smoking and previous myocardial infarction were found

more often among men. Percutaneous coronary intervention was significantly more

frequently performed in men than in women (82.4% vs. 75.3%; p<0.001).

Based on the data of 8582 myocardial infarction patients (4981 with STEMI), a

research found that the hospital, 30-day and 1-year mortality of patients with STEMI

were 3.7%, 9.5% and 16.5%, respectively. In patients with NSTEMI these figures were

4%, 9.8% and 21.7%, respectively [41].

Another research based on information stored in HUMIR found that the mean age

of STEMI patients was lower by 5.3 years than that of patients treated for NSTEMI.

In the group of NSTEMI patients, the occurrence of diabetes, hypertension, peripheral

vascular disease, and previous history of myocardial infarction and stroke were signif-

icantly more frequent. The in-hospital mortality rate of STEMI patients was 3.7%, and
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30-day and 1-year mortality rates were 9.5 and 16.5%, respectively [42].

For 10 000 residents the incidence of myocardial infarction in Budapest was 28.63

in males and 16.21 in females, while in Szabolcs-Szatmár-Bereg county the mean

incidence was 32.49 for males and 18.59 for females [37].

A research compared casemix, treatments and outcome for STEMI patients who

are treated in Hungary or Sweden [43]. The Swedish data source was the SWEDE-

HEART registry. There were substantial differences in baseline characteristics be-

tween the two countries, with the Hungarian STEMI patients being younger and hav-

ing more cardiovascular risk factors. More patients in Sweden received thrombolysis

(5.4% versus 1.5%) or underwent primary PCI/subsequent coronary angiogram (91.2%

versus 84.2%). The 30-day mortality was lower in Sweden than in Hungary (7.9% ver-

sus 9.5%; odds ratio 0.81, 95% confidence interval 0.72 to 0.93).

The aim of authors of another research was to obtain data on the significance of

the culprit vessel in patients with STEMI treated successfully by primary percutaneous

coronary intervention [44]. The culprit vessels were the left main artery, left anterior

descendent artery, left circumflex artery, and right coronary artery. The majority of

the culprit lesions were found in the left anterior descendent artery (44.3%), the right

coronary artery (40.9%), and the left circumflex artery (13.7%). The culprit vessel was

overall a highly significant (p<0.0001) factor of survival.

In a research [45], the frequency of the real-life usage of coronary intervention, its

long-term efficacy and safety in elderly patients with AMI were investigated. A total

of 8485 consecutive patients were enrolled; 65% of the patients were male (mean age

was 65.1 ± 12.4); and 51% of all cases was STEMI. As a conclusion, the authors state

that coronary intervention is underused among the elderly despite the mortality benefit.

In 2015, 12 681 patients had 12 941 acute myocardial infarctions. A research [46]

in 2017 found that less than half of patients (44.4%) were treated with STEMI. 91.6%

of the patients were treated in hospital with invasive facilities. Most of the patients
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(94%) with positive coronary arteriography were treated with percutaneous coronary

intervention. The 30 day mortality of the whole group was 12.8% vs. 8.6% of patients

treated with an invasive procedure.

3.1.3 Existing myocardial registers in Europe

In this section, I list three ongoing European myocardial projects: Myocardial Is-

chaemia National Audit Project (MINAP) in England, Swedish Websystem for En-

hancement and Development of Evidence-based care in Heart disease Evaluated Ac-

cording to Recommended Therapies (SWEDEHEART) and National Registry of Acute

Myocardial Infarction in Switzerland (AMIS Plus). Where the information is available

for the public, I discuss the validity and accuracy of the stored data.

Myocardial Ischaemia National Audit Project

The Myocardial Ischaemia National Audit Project is a national clinical audit of

the management of heart attack in England, Wales and Northern Ireland. It is one

of six national cardiac clinical audits that are managed by the National Institute for

Cardiovascular Outcomes Research (NICOR), which is part of the Institute for Car-

diovascular Science at University College London. MINAP was established in 1999

and data collection began in October 2000.

The aims of MINAP: to audit the quality of care of patients with acute coronary

syndrome (ACS) and provide a resource for academic research [47].

Based on the 2015 Annual Report [48] 217 acute hospitals in England, Wales and

Northern Ireland participate in the project and continuously send the encrypted data of

130 fields covering demographic factors, co-morbid conditions and treatment specifi-

cations in hospital.

80% of hospitals use MINAP software to enter the data into the system and the rest

of the hospitals use a locally developed software or commercial applications for this
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purpose.

The data itself is available for research by application to NICOR.

Swedish Web-system for Enhancement and Development of Evidence-based

care in Heart disease Evaluated According to Recommended Therapies (SWEDE-

HEART)

SWEDEHEART was launched in 2009 after merging four Swedish national reg-

istries on coronary artery disease. The project is supported by the Swedish Society

of Cardiology, the Swedish Society of Thoracic Radiology, the Swedish Society of

Thoracic Surgery, and the Swedish Heart Association. The registry is financed by

the Swedish Association of Local Authorities and Regions, the Swedish state, and the

Swedish Heart-Lung Foundation [49].

The primary purpose of SWEDEHEART is to support development of evidence-

based therapies in acute and chronic coronary artery disease and in catheter-based or

surgical valve intervention by providing continuous information on patient care needs,

treatments, and treatment outcomes.

The number of participating Swedish hospitals is 74 in 2016, corresponding to 95%

degree of coverage at hospital level. About the data fields [50]:

1. 106 variables for patients with ACS,

2. 75 variables regarding secondary prevention after 12-24 months,

3. 150 variables for patients undergoing coronary angiography/angioplasty and

4. 100 variables for patients undergoing heart surgery.

All data are registered on a web-based interface directly by the caregiver. The data

itself is available for research by application to the SWEDEHEART steering group.

National Registry of Acute Myocardial Infarction in Switzerland (AMIS Plus)
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The Swiss registry of acute coronary syndrome is called National Registry of Acute

Myocardial Infarction in Switzerland (AMIS Plus). In the list of the aims of the reg-

istry, we find:

1. to understand the transfer, use and practicability of knowledge gained from ran-

domised trials

2. to generate input for subsequent prospective and randomised studies.

3. to determine how adherence to guideline-based treatments in the ”real world”

works.

The AMIS Project was initiated in 1997 [51]. AMIS Plus has been continuously

collecting data since then on patients admitted to Swiss hospitals with acute coronary

syndromes. Today it operates as an industry-sponsored project. The treating doctor

or trained study nurse enter the information online or through a paper-based question-

naire. Out of 106 hospitals treating ACS in Switzerland, 76 hospitals temporarily or

continuously send data into the registry (coverage of 72%).

The data itself is available for research with the approval of the AMIS Plus Steering

Committee.

Auditing & Quality of data

One of the key questions about this large amount of data is its accuracy. All of the

registers use solutions based on some kind of randomisation technique to check and

improve the quality.

MINAP has a specially designed data validation tool. Every year, the system re-

quires every hospital to re-enter 20 data items from the medical records of 20 randomly

selected patients [47]. Then, this re-entered data gets compared with the original ones

and an agreement score is generated to every hospital. At the end of the process, the

hospitals get their scores with advices how to improve performance. The median level
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of agreement between MINAP data and re-audit data (across all hospitals) was 72% in

2003 and has risen to 89.5% in 2008 [52].

SWEDEHEART uses personal validation solution. A monitor visits approximately

20 hospitals every year. In 2007, accuracy of 96% was reported [50].

AMIS Plus also uses random selection for auditing. Two large and three small

hospitals, and about 5-10 patients are randomly selected each year. A summary from

2014 [53] reports there were 0.05% critical, another 0.05% major, and 2.2% minor

findings.

3.1.4 Dataset & Data Preparation

The dataset of my research was an extract from HUMIR from the year 2014 to 2016.

It contained 47,391 patients with AMI. Less than half of the patients (42.8%) were

treated with STEMI; and 40.3% of the patients were female. In the whole dataset the

mean age was 67.06 year, with 67 as median and 12.8 as standard deviation.

Table 3.4 shows patient characteristics related to AMI in the dataset in case of

STEMI and NSTEMI patients. The source of this information can be one of the fol-

lowings: previously identified diseases diagnosed by the patent’s own physician and

based on a former hospital final report; or disease status identified in the current treat-

ment (diabetes mellitus, hypertension, peripheral arterial disease).

The patient record contained 23 separate fields, which can be categorised into 3

groups. (The categorisation is made by the author of the current dissertation in order

to make referencing easier.) The followings list the attributes of the dataset.

Group 1: General information about the patient
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Table 3.4: Patient characteristics
STEMI NSTEMI

Gender: Male n = 20 302, 61% (12 448) n = 27 089, 58% (15 829)

Age Mean: 65, St. dev: 13.08 Mean: 69.5, St. dev: 12.26

Prior myocardial infarction n = 19 355, 20% (3 935) n = 25 973, 34% (8 750)

Previous heart failure n = 18 621, 11% (1 976) n = 25 268, 23% (5709)

Hypertension n = 19 623, 75% (14 760) n = 26 568, 86% (22 839)

Prior stroke n = 19 149, 8% (1 576) n = 25 733, 13% (3 222)

Diabetes mellitus n = 19 240, 29% (5 525) n = 26 090, 39% (10 137)

Peripheral artery disease n = 18 116, 11% (2 024) n = 24 604, 19% (4 792)

Percutan coronary intervention n = 20 306, 81% (16 490) n = 27 091, 58% (15 620)

Hyperlipidaemia n = 16 332, 31% (5056) n = 22 335, 40% (8 868)

Smoking (Current + Former) n = 13 171, 48% (6 297) +

n = 13 171, 15% (1 914)

n = 15 564, 34% (5 259) +

n = 15 564, 22% (3 406)

1. Event ID is a 3 to 5 character-long identifier which uniquely identifies an event

in the registry. It is an auto-incremented numeric field.

2. Patient ID is a 3 to 5 character-long identifier which uniquely identifies a patient

in the registry. If two myocardial events belong to the same patient, the Event

IDs are different but Patiend IDs are the same.

3. Date of birth

4. Gender is either man or woman

5. ZIP code is 4 character long geographic code giving the code of the area where

the patient lives

6. If the patient alives as a binary field

7. Date of death. It is empty unless If the patient alives field is false.
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Group 2: Previous medical history

This group of fields holds information about the patient related to previously re-

ported diseases, prehospital treatment and smoking. Except smoking, these are all

simple numeric fields with two possible values: yes or no. Of course, missing values

are present here as well.

1. Myocardial Infarction

2. Heart failure

3. Hypertension

4. Stroke

5. Diabetes mellitus

6. Peripheral artery disease

7. Hyperlipidaemia

8. Cardiogenic shock

9. Smoking

If set, field Smoking can have three values: The patient is an active smoker, never

tried or stopped it.

Group 3: Information about the pre- and in-hospital treatment

The last group consists of 7 fields which is a set describing the properties of the

pre- and in-hospital treatment.

1. Prehospital reanimation

2. Percutaneous Coronary Intervention (PCI) during hospital stay
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3. Level of creatinine is an almost all-empty field with some numeric value (range

in the dataset: 0 to 698)

4. Diagnosis is the type of the heart attack: STEMI (MI with ST-elevation on the

ECG) or NSTEMI (MI without ST-elevation on the ECG)

5. Treatment ID

6. Date of admission

7. Creatinine is a categorical field which value can be normal or abnormal

Target variables

Two target variables were used in the predictive models, namely 30-day and 1-year

mortality.

”1-year mortality” is a binary result for each patient and AMI event; means the fact

that if the given patient dies in a 1-year period from the date of submission. As can

be seen in this section above, this information is not implicitly included in the list of

fields – but can be calculated with a single operation based on two other fields.

This one operation checks if the If the patient alives field is not true and subtracts

the Date of admission from Date of death. If this number (number of days between

these two dates) is lower than 365, then the value of the target variable is 1 (true),

otherwise it is 0 (false).

The other target variable is 30-day mortality, whose definition and method of cal-

culation only differs from 1-year mortality in the length of the period investigated.

From the full dataset, a training and a validation sets were created with maintaining

the original distribution of the target variables. The models were trained on the training

set and then the predicting power was validated on the validation set. Proportion of 7:3

was used in the process of constructing the training and validation sets.
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Data Preparation

As it was discussed in Section 2.1., data preparation is a multi-step process and it

covers all activities to construct the final dataset from the initial raw data.

Data preparation tasks usually have to be performed multiple times and not in

any prescribed order. Tasks include table, record and attribute selection as well as

transformation and cleaning of data. The aim of this activity is to produce a final

dataset in a format that can be used as the direct input of predictive models.

Collection, assessment, consolidation, cleaning, data selection and transformations

are all tasks, together with missing data handling which builds up the process of data

preparation.

In this section, I list the most important data preparation tasks applied in our study.

Formatting

Most of the fields needed some adjustment during the process of data preparation.

After importing the initial dataset, the dates were simple character-based values instead

of date objects. In order to be able to make operations between dates, I had to convert

them into the appropriate format.

In order to generate a uniform input to all of the models, I have changed the set of

values in case of almost each field.

Constructing

With the process detailed in the subsection Formatting, I have created 15 new,

binary fields. In addition to that, Age of patients was added with a simple calculation

from Date of admission and Date of birth.

Figure 3.1 shows the histogram of this new field Age in the full dataset (transparent

bars), and only in case of patients who died within one year (grey bars).

Eliminating

There were 9 fields which were eliminated because either they didn’t hold rele-

vant information, either they were used already in the construction - but could have
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Figure 3.1: Histogram of age in the full dataset and in case of patients with 1-year

mortality

slowed down the process of model training. For this reason, Event ID, Patient ID, ZIP

code and Treatment ID were deleted with absolutely no usage; Level of creatinine was

eliminated because only in case of 2.8% of the rows were filled in; and although Date

of admission, Date of death, Date of birth and If the patient alives have been used

in the process of constructing new fields (see Target variables subsection), they were

eliminated as individual fields.

Imputation

Addressing missing values proved to be essential in the researches. The missing

values of HUMIR dataset in percentage for each field are shown in Table 3.5 (table

contains only the attributes where at least one missing value is present):
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Table 3.5: Presence of missing values in percent

Event ID 0 Myo-

cardial

infarction

4.3 Pre-

hospital

reanima-

tion

5.8

Patient ID 0 Heart fail-

ure

7.4 Cardio-

genic

shock

8.3

If the patient alives 0 Hyper-

tension

2.5 PCI 0

Date of death 0 Stroke 5.3 Level of

creatinine

0

Gender 0 Diabetes

mellitus

4.4 Diagnosis 0

Date of birth 0 Peripheral

vascular

disease

9.9 Treatment

ID

0

ZIP code 0 Hyper-

lipidaemia

18.4 Date of ad-

mission

0

Smoking 39.4 Creatinine 6.0

As [54] warns, ignoring incompleteness or handling the data inappropriately may

bias study results, reduce power and efficiency, and alter important risk/benefit rela-

tionships.

To deal with missing data multiple imputation using fully conditional specifica-

tion (FCS) [29] and Bayesian linear regression was applied with 5 imputations and 5

iterations, leaving the final, prepared dataset size at n = 47,391.
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As a result, 5 different sub-datasets were created, and on each I performed the full

process of modelling for both the 30-day and 1-year mortality, as it will be detailed in

Section 3.2 (Performance of machine learning algorithms).

Although there are more approaches of addressing missing values from simple

ones (filling in with the mean of the given variable) to more complex solutions like

maximum likelihood [55] or Bayesian estimation [56], I decided to go with FCS-based

multiple imputation, where imputations are generated sequentially by specifying an

imputation model for each variable given the other variables. The reasons behind the

selection of this technique, are the follows:

1. Multiply imputed datasets make possible to check the ”goodness” of the impu-

tations, by comparing the prediction power of the given models trained on the

different imputations

2. In the HUMIR-dataset, we have variables with different scales and complex re-

lations between them, which would question the usability of another type of

multiple imputation, Joint Modeling (see [29])

3. In addition, as [54] mentions, FCS multiple imputation is still rarely used in epi-

demiology, although it is ”a powerful and statistically valid method for creating

imputations in large data sets with complex data structures”

Working with the imputed datasets

Applying multiple imputation, I have investigated to find a proper way to work

with multiply imputed datasets. I found that although there are some tools dealing

with the topic, a solution which can handle these imputations massively, simply does

not exist:

1. caret’s with.mids() function performs a computation of each of imputed datasets

in data – but it doesn’t aggregate, just compare
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2. caretEnsemble [27] is a package for making ensembles of different caret models

– but it can be used only to the same dataset

3. as a part of mice package, complete() function generates a long matrix on a

multiply imputed dataset – it’s a handy tool but doesn’t aggregate results

4. pooling [57] can be used to analyze multily imputed datasets in one step.

As a consequence, for each of the five imputation and two target variable, I al-

ways constructed several models. For example, when comparing decision tree, neural

network and regression, I had 10 decision tree, 10 neural network and 10 regression

models - and, finally, we had 15 models for 30-day mortality and another 15 models

for 1-year mortality.

With fulfilling the previous points step-by-step, the raw data became suitable for

participating in the implementation of the machine learning process as input for the

predictive models.

Thesis group 1: In a methodological approach, I have discussed and analyzed the

data preparation of artificial intelligence algorithms on the dataset of the Hungarian

National Myocardial Infarction Register.

Thesis 1.1

At the international level, I have took a look at the official registries that

collect cardiovascular data; within this, I have highlighted the uniqueness of

the Hungarian National Myocardial Infarction Register and gave a ”literature

recipe” for the use of artificial intelligence methods.

Thesis 1.2

For the dataset of the Hungarian Myocardial Infarction Registry, I have

developed a data preparation procedure, with which the raw data became
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suitable for participating in the implementation of the machine learning pro-

cess as input for the predictive models.

Relevant own publications pertaining to this thesis group:

[P-1] [P-2] [P-3]

3.2 Performance of machine learning algorithms (Thesis 2)

After having the prepared dataset, the next phase is the modelling, as CRISP-DM

methodology declares (see Section 2.1). In my research, in addition to the ’classi-

cal’ regression model, I built models with Decision Trees, Neural Network, Random

Forest, General Boosted Model algorithms and Ensembled techniques to predict the

30-day and 1-year mortality of patients who have suffered a heart attack.

The following considerations were the reasons for choosing the aforementioned

algorithms:

1. Decision tree: despite its obvious disadvantage (very prone to overfitting), it is

the basis of the most modern algorithms (among those included in the research:

Random Forest, GBM). In addition, it is a white-box model which fact could be

a help in the hand of phisicians.

2. Neural Network: according to the literature, even when applied alone, it brings

acceptable results in this field of medicine ([58] and [59]). In addition, as a

black-box model, it represents another type of model.

3. Random Forest and Boosting: they are obviously the most effective model types

in many fields of medicine, including mortality prediction

4. Ensembled: with the ensembled approach, the goal was to exploit common ad-

vantages of the individual models
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In the followings I present the context and the scientific results in the next order:

1. first of all, I review the challenging question of ”Regression vs. Machine learn-

ing solutions” especially on the field of mortality prediction and AMI (Section

3.2.1)

2. then I list the key points and characteristics of the applied models and quote

some important connected results from outer researches (Section 3.2.2 - 3.2.6)

3. then finally, I list my exact 30-day and 1-year mortality prediction results (Sec-

tion 3.2.7 - 3.2.9)

3.2.1 Introduction - Regression vs. Machine learning solutions

Logistic regression is the most commonly adopted and trusted model in the field of

mortality prediction. From the view of medicine, it is import to know if there is a

competitive opponent for the mostly used and trusted regression. Several studies work

with regression - in general, it represents the ”classical” statistical approach with fast

computational time and high accuracy. Next to regression, researchers try to use ma-

chine learning-based solutions to build predictive models to reach higher accuracy. In

this subsection, I list a few attempts and their results.

Lee et al. [60] developed a logistic regression model based on a dataset of patients

diagnosed with heart failure at multiple hospitals in Ontario, Canada. In a derivation

set of 2,624 patients, the mortality rates were 8.9% in-hospital, 10.7% at 30 days, and

32.9% at 1 year. While validating the model, the area under the Receiver Operating

Characteristics (ROC) curve was 0.80 for 30-day mortality and 0.77 for 1-year mortal-

ity.

Based on a dataset of 52,616 patients, Jack et al. [61] developed logistic regres-

sion models to predict 30-day and one-year mortality after an AMI. They predicted

mortality with an area under the ROC curve of 0.78 for 30-day mortality and 0.79 for
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one-year mortality. In two independent validation datasets, this model reached 0.77

and 0.78, respectively.

Chin et al. [62] developed (n = 65,668) and validated (n = 16, 336) a logistic

regression model to predict the risk of in-hospital mortality of patients with AMI. They

reported AUC of 0.85 and 0.84 in the derivation and validation cohorts, respectively.

Clermont et al. [63] compared the performance of logistic regression and artificial

neural network (ANN) models while predicting hospital mortality for patients in the

intensive care unit. Seven intensive care units with 1,647 admissions were investigated,

and finally they found that the two models have similar performance (0.80 and 0.84 as

the area under the ROC curve).

Nilsson et al. [64] aimed to develop a method to select risk variables and predict

mortality after cardiac surgery by using artificial neural networks. They also used area

under the ROC curve as performance indicator and found that area of artificial neural

networks (0.81) was larger than the logistic model’s (0.79).

Orr found [65] that implementing a probabilistic neural network model to estimate

mortality risk following cardiac surgery is relatively rapid, and it is an alternative to

standard statistical approaches. He got 0.72 and 0.81 as ROC AUC for the training and

validation sets. The neural network model reached 0.74 on an independent dataset of

the following year.

Voss et al. [66] investigated if neural networks improved on the risk estimate of

the commonly used logistic regression. They used multi-layer perceptron (MLP) and

probabilistic neural networks (PNN) to estimate the risk of MI or acute coronary death.

As they reported, the AUC of the MLP was greater than that of the PNN (0.897 versus

0.872), and both exceeded the AUC for LR of 0.840. As a conclusion, the authors

declare that use of the MLP to identify high-risk individuals as candidates for drug

treatment would allow prevention of 25% of coronary events in middle-aged men.

Austin compared [58] the predictive power of logistic regression with that of re-
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gression trees for predicting mortality after hospitalization with an AMI. His study

shows that regression trees (0.762 AUC) do not perform as well as logistic regression

(0.845 AUC). Author used data on 9 484 patients admitted to hospital with an AMI in

Ontario, Canada.

In another study, Austin et al. [59] used ensemble-based methods, including boot-

strap aggregation (bagging) of regression trees, random forests, and boosted regression

trees. They found that ensemble methods offered substantial improvement in predict-

ing cardiovascular mortality compared to conventional regression trees, but may not

lead to clear advantages over conventional logistic regression models.

Convolutional neural network was applied by Acharya et al. [67] to automatize

the diagnosis of congestive heart failure using ECG signals. They presented an 11-

layer deep convolutional neural network model and out of four different datasets, one

attained the highest accuracy of 98.97%, specificity and sensitivity of 99.01% and

98.87% respectively.

One group of quoted researches uses only regression; other ones compare regres-

sion with neural network, but in another field of medicine; some publishes only the

results of neural networks or decision trees; but only a few of them investigated the

differences on an AMI dataset and, the most important, none of them used the official

Hungarian myocardial registry to predict short- and long-term mortality.

In this study, I used the results of the logistic regression model as a reference for

comparison. I used regression without assuming any interaction between the variables

or applying any penalization.

3.2.2 Decision tree

Decision tree is a graphical model that uses a tree-like structure of classifying exam-

ples. Classification trees (target variable with discrete values) and regression trees

(target variable with continuous values) are one of the simplest tools in the field of
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machine learning, they are widely used because of their comprehensibility and their

”white-box” property (in the sense that the final knowledge of a model can be ex-

pressed in a readable form).

In each step, the algorithm splits the source set into two subsets based on a feature

and a corresponding value. This operation gets repeated in a recursive manner, until a

node has all the same values of the target variable, or another stopping criteria fires.

A few usual parameters to determine when to split are: the minimum number of

observations that must exist in a node in order for a split to be attempted; the minimum

number of observations in any terminal node; the maximum depth of any node of the

final tree; a complexity parameter (cp) which is used like the following: ”any split that

does not decrease the overall lack of fit by cp is not attempted” [22].

Although DT itself usually doesn’t deliver acceptable prediction result, it has an

important role in Machine Learning as it serves as the basis for many other good-

performing algorithms like Random Forest or Boosting techniques.

3.2.3 Neural network

Artificial neural networks are based on a collection of connected neurons (nodes),

where the connections can transmit a signal from one neuron to the other. This theory

is inspired by biological neural networks. Neural networks are usually referenced as

”black box” models, as they have no ability of explaining their answers and presenting

the acquired knowledge in a comprehensible way [68].

A basic neural network has interconnected neurons in three different types of layers

(layers are listed with their primary roles): Input Layer (processes and analyzes the

data, then passes it on the next layer); Hidden Layer (receives data from the input layer

or from another hidden layer; passes it on to the next layer; a network can contain any

number of hidden layers); Output Layer (receives data from the previous layer and

gives the final result). Each connection has a default weight and the learning itself is
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the process of changing the weights after each piece of data is processed. Activation

function is responsible for calculating the output of the node which is transmitted to

the next layer.

A high number of neural network-based applications can be found in the last few

years ([69] [70] [71] [72] [73]). In this study, a feed-forward neural network with a

single hidden layer was used.

3.2.4 Random Forest

The basic idea of Random Forest algorithm is building many small, weak, less-correlated

trees in parallel. Then, with averaging (regression) or majority vote (classification) we

can combine the weak trees to form a strong learner.

The RF algorithm works as follows: first, we select a bootstrap sample (S(i)) from

the original dataset (S), where S(i) denotes the ith sample). Second, on each bootstrap

sample and on each node, a decision tree-based learning method gets performed, but

with only a randomly selected, (very) small subset (f) of features (F).

The following two pseudocodes illustrate the basic behaviour of Random Forest

algorithm. The first one contains the selection of bootstrap sample and the combination

(averaging or majority voting) of the small trees.

Require: S: Initial Dataset, F: Features, B: number of weak trees in the forest

Output: H: the final tree

RandomForest :

1: H = 0

2: for i = l to B do

3: S(i) = a bootstrap sample from S

4: h(i) = ModelWeakTree(S(i), F)

5: H = H U h(i)

6: end for
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7: return H

The second part of the algorithm demonstrates how the weak trees are created:

Input: S, F

Output: TREE

ModelWeakTree :

1: for all node do

2: f = small subset of F

3: Split on best feature and value in f

4: end for

5: return T REE

The main advantages of RF are the small trees: by reducing the number of po-

tentially eligible features to a small number (usually: 2, 3, 5) for each splitting, the

training speed gets faster, furthermore, the correlation between the trees get decreased.

From the view of system architecture, the process of training can be run in a parallel

way: the bigger number of cores in the processor has good impact on the training time.

As the algorithm above depicts, RF is an ensemble method: while creating the

final, strong learner, it uses other techniques as well.

The applied implementation of Random Forest algorithm is based on the original

publication published by L. Breiman [74]. In the process of RF-modelling, the two

most important questions are the value of the following parameters:

1. ntree: number of small, weak trees to grow

2. mtry: the number of variables randomly sampled as candidates at each split

In case of classification models, the default value for mtry in the R package is the

square root of the number of predictor variables, while in case of regression, it is the

number of predictor variables divided by 3 (rounded down, in both cases).
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In one hand, the bigger number of weak trees (ntree) usually produces more ac-

curate models, but can slow down the training process because of the bigger memory

requirement.

3.2.5 General Boosted Model

Boosting is a heavily applied method in the wide spectrum of medicine. In the next

examples researchers used this method to construct strong learners or found that it is

one of best-performing method in the field of mortality prediction.

Saravanou, Antonia, et al. examined infant mortality prediction and established a

boosted tree model which performs the best (0.85 AUC) in predicting the number of

infants per 1000 that do not survive until their first birthday [75].

Du, Xinsong, et al. were working with prediction of in-hospital mortality of pa-

tients with febrile neutropenia using gradient boosting tree and other non-linear and

linear models [76], and, as a result, they achieved 0.92 AUC.

One of the recent attempt is made by Yan, Li, et al.: they applied a gradient

boosting-based algorithm to predict mortality for COVID-19 patients [77].

In addition, the application of a boosting algorithm can be found in many other

areas (early hospital mortality prediction using vital signals [78], mortality prediction

in patients admitted to an Intensive Care Unit with a diagnosis of sepsis [79], mortal-

ity prediction in transcatheter aortic valve implantation [80], prediction of in-hospital

mortality after pancreatic resection in pancreatic cancer patient [81]).

Boosting and heart diseases

Angraal, Suveen, et al. applied five methods including RF, gradient descent boost-

ing and support vector machine for predicting mortality and heart failure (HF) hospital-

ization for outpatients with HF with preserved ejection fraction [82]. They found that

the RF was the best performing model with a mean C-statistic of 0.72 for predicting

mortality.
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Risk scores for prediction of mortality 30-days following a ST-segment elevation

myocardial infarction (STEMI) have been developed by [83] Shouval, Roni, et al.,

while they compared six machine learning algorithms to the conventional validated

risk scores. They observed the maximal predictive performance with the RF models

(AUC = 0.91), performing similarly to Naı̈ve Bayes (AUC = 0.87) and AdaBoost (AUC

= 0.87) and significantly better that the other algorithms.

Investigating a database containg patient information from 2005 to 2012 from a

cardiac surgical center, Allyn Jérôme, et al. found that out of the different machine

learning techniques, RF and Gradient Boosting Machine had the best AUC value.

Both achieved 0.768 when feature filtering was skipped; and there were only 0.004

difference with enabled filtering. [84].

Sherazi, Syed Waseem Abbas, et al. developed multiple mortality prediction mod-

els using gradient boosting machine, generalized linear model (GLM), RF and deep

neural network (DNN) [85]. The goal was to propose a machine learning–based 1-

year mortality prediction model after discharge in clinical patients with acute coronary

syndrome. The best AUC values were reached by gradient boosting machine and DNN

models (0.898), then RF (0.883), then GLM (0.873). Overall, gradient boosting ma-

chine was superior to other approaches in the aspect of AUC, recall, accuracy, and

F-score.

Fundamentals of GBM

Instead of using a single model, Boosting represents the idea that the final model

could be more powerful if we continuously add weak models (e.g. decision trees) to

our system, each compensating the weaknesses of its predecessors. In a more detailed

way, as it is visualized in Figure 3.2., boosting is the process of iteratively adding basis

functions in a greedy fashion so that each additional basis function further reduces the

loss function. Boosting has two major algorithms: Adaptive Boosting and Grandient

Boosting.
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Figure 3.2: Structural overview of Boosting method

Adaptive Boosting (known as AdaBoost) is developed mainly for classification

problems, so in this case, the weakness of each learner is the set of misclassified data

points [86]. AdaBoost solves this issue with adding increased weights to these points

(while decreasing the weight of well-classified items) so that the next weak learner

will pay extra attention to putting it to the right class.

Gradient Boosting also adds more weak learners to the system, but does the cor-

rection in another way: instead of adding sample weights and tuning them based on

the success of classification, it compares the difference between the predicted and the

real value coming from the dataset. Originated from this behaviour, Gradient Boosting

can be used for both regression and classification problems.

The implementation of R’s generalized boosted modeling framework closely fol-

lows Friedman’s Gradient Boosting Machine [87].

Settings

In my research, for each parameter-combination, a bootstrap based validation with

100 replicates was used on the training set to obtain a reliable estimate of model per-
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formance. The tuning parameters of the corresponding package are the following:

• n.trees, specifying the total number of trees to fit;

• interaction.depth, meaning the maximum depth of each tree;

• n.minobsinnode, declaring the minimum number of observations in the terminal

nodes of the trees;

• and the shrinkage parameter which is applied to each tree in the expansion.

3.2.6 Ensembled modelling

Ensembled modelling is one of the most promising area of machine learning-based

predicting. In different domains researchers try to combine the advantages of individ-

ual classifiers to produce a strong learner. In the current subsection I summarize the

results of some of the most-related articles.

Latha et al. [88] used ensembled modelling on the Cleveland Heart Disease Database

to improve the accuracy of prediction of heart disease risk. They used weak classifiers

like decision tree (C4.5), Bayesian network, Naı̈ve Bayes, Random forest and neu-

ral networks to combine them in different ensembled-based modelling techniques like

Boosting, Bagging, Stacking and Majority vote. This comparative analytical approach

was done to determine how the ensemble technique can be applied for improving pre-

diction accuracy in heart disease. As a result, a comparison of the various ensembling

strategies revealed that the accuracy of the weak classifiers could be increased by a

maximum of 7.26%.

Austin el al. found [89] that improvements in the misclassification rate using

boosted classification trees were at best minor compared to when conventional classi-

fication trees were used. They analysed short-term (30-day) mortality in two cohorts

of patients hospitalized with either acute myocardial infarction (N = 16,230) or con-
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gestive heart failure (N = 15,848). They observed minor to modest improvements to

sensitivity, with only a negligible reduction in specificity.

In another study [90] on the same datasets, Austin el al. evaluated the improve-

ment that is achieved by using ensemble-based methods, including bootstrap aggrega-

tion (bagging) of regression trees, random forests, and boosted regression trees. They

found that ensemble methods offered substantial improvement in predicting cardiovas-

cular mortality compared to conventional regression trees; but conventional logistic

regression models that incorporated restricted cubic smoothing splines had even better

performance. An example of ROC AUC values from their study: on the ”EFFECT

Follow-up” database, their models achieved the following results by ROC AUC: re-

gression tree: 0.767, bagged trees: 0.820, random forest: 0.843, Boosted trees (depth

four): 0.852, Logistic regression: 0.852, Logistic regression—Splines: 0.858, Logistic

regression—GRACE score: 0.826.

A neural network ensemble method was proposed [91] by Das et al.. Three in-

dependent neural networks models were used (Levenberg–Marquardt, scaled conju-

gate gradient and Pola–Ribiere conjugate gradient algorithms) as primary learners,

and the final, ensembling layer combined their results with averaging. The investi-

gated database contained 303 complete samples. Although they didn’t published the

predictive performance of the individual models, the final model gained 89.01% clas-

sification accuracy, 80.95% sensitivity and 95.91% specificity values on the validation

dataset.

Subramanian et al. were also focused on heart failure mortality and used partial

patient data from the dataset of Vesnarinone Evaluation of Survival Trial [92]. On

the data of 963 patients, they established three logistic regression models to predict

survival and an ensemble model learned by boosting. On of the major finding of the

study is that their ensemble model performed significantly better than the standard

approach of logistic regression. As authors discuss, the reason for this significant
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increase in predictive accuracy is that ”an ensemble of models adjusts better for the

biological variability inherent in clinical studies that are derived from patient data.”

Although the previous examples were focusing on heart failure and mortality pre-

diction, researchers gain advantages of ensemble modelling in various fields: Bag-

ging, Random Forests and Extra Trees were used by [93] Petkovic et al. when they

addressed the task of feature ranking for hierarchical multi-label classification. Extra

Tree is similar to RF, with two main differences: instead of using bootstrap replicas,

Extra Trees use the whole original sample; and the selection of cut points is random

and not an optimum split, like in RF [94]. Three feature ranking scores like Symbolic,

Genie3 and the Random Forest Score were investigated and authors found the first

two scores yield relevant feature ranking. In the domain of medical image processing,

Tóth et al. [95] described an efficient 3D visualization framework in connection with

an ensemble-based decision support system.

Fundamentals of Ensembled Modelling

Ensembled modelling as a strategy based on the idea that if we combine the pre-

dictive performance of different classifiers, it can produce a stronger learner. Bagging

also known as Bootstrap aggregation, Boosting and Stacking are the main classes of

ensemble learning methods.

1. In Bagging, from the original dataset new datasets (called bootstrap samples

or bootstrap replicates) are selected with replacement; we train the models on

each of them; and finally the outcome is calculated with averaging (in case of

regression) or majority vote (in case of classification).

2. In Boosting, simple, 2-3 level depth trees are used and we build the models trying

to predict based on the prediction error of the previous tree. The two types are:

ADA Boosting and Gradient Boosting.

3. In Stacking different types of individual machine learning models are applied
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(1-st level learner) and trained on the same, original dataset, then we combine

the prediction results of them in an upper level (meta-learner or second-level

learner).

In the list of previously published models, my RF models is similar to Bagging

category (although there are some differences between RF and bagged models); and

our GBM models belong to Boosting category: a given number of decision trees were

used to construct a final, better learner.

With GBM, I was focusing on Stacking, as different types of first-levels learners

were used, then I tried to exploit the common predictive power of them in an upper

level.

The schematic overview of Stacking is depicted on Figure 3.3. As it shows, there

can be any number of 1st-level learners, they are trained on the full, original dataset

and produce their ”local predictions”. These different predictions serve as inputs for

the meta-learner who attempts to combine these predictions to have the best possible

final outcome. As can be seen, the 1-st level learners have to be fully trained and the

local predictions have to be made before the Meta-learner starts to operate.

In the current study, the 1-st level learners are RF, GBM and NN, while the Meta-

learner is Generalized Linear Model, so the ensembled model is a combination of

machine learning algorithms and regression models. The modelling structure of the

current research is explained and visualized in details in the followings.

Settings

After generating the imputations, training and validation sets were created on each

imputations with maintaining the original distribution of the target variables. The train-

ings were used as the input data of the models (on these, the algorithm performed

boosting to find the optimal hyperparameters for the given model); while the valida-

tion datasets were used to manually measure the prediction performance in ROC AUC.

ROC AUC was applied to select the optimal parameters using the largest value.
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Figure 3.3: Schematic overview of Stacking

For each parameter-combination, a bootstrap based validation with 10 resampling iter-

ations were used on the training set to obtain a reliable estimate of model performance.

The Modelling structure can be visualized in three figures: on Figure 3.4, the full

modelling structure is visualized, while the next two figures focus on the separate

sections in a more detailed way.

Figure 3.5 depicts the first step: the connection between the original dataset, the

imputations, the target variables and the models as inputs of the ensembled models.

It contains only one case (RF model) out of the three, but the same processes were

performed for GBM and NN as well.

After I finally had all the 5 (number of imputations) * 2 (number of target variables)

* 3 (number of model types) = 30 models, I could go on with the ensembling phase.

Figure 3.6 depicts the connection between the initial models and the ensembed ones.

3.2.7 Results - 30-day mortality

The 30-day mortality rate for the whole dataset (n = 47,391) was 11.16%.

51



Figure 3.4: Ensembled Modelling structure - Overview

Figure 3.5: Ensembled Modelling structure - Step 1

Regression, Decision Tree, Neural network results

In the training sets, we achieved an average of 0.788 as ROC AUC for decision
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Figure 3.6: Ensembled Modelling structure - Step 2

tree models, 0.837 for neural network models and 0.836 for regression models. In

case of neural network and regression models, the standard deviation of the AUC was

negligible (<0.001), but the tree models’ was 0.025.

Out of the five, neural network performed the best in the third imputation. It

reached 0.840 as ROC AUC (95% Confidence Interval (CI), 0.834 - 0.845). In this

same imputation, the result of the regression model was 0.836 (95% CI, 0.832 - 0.843)

and the decision tree reached 0.783 (95% CI, 0.776 - 0.790).

In the validation sets, an average of 0.774, 0.835 and 0.834 were experienced in

case of decision tree, neural network and regression models, respectively.
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Figure 3.7: Performance of the decision tree, neural network and regression models.

Training set. Left: 30-day mortality. Right: 1-year mortality.

Table 3.6: ROC AUC values of the 30-days models, training set

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5

Regression 0.8361 0.8369 0.8356 0.8340 0.8376

Decision tree 0.7810 0.7993 0.7826 0.7856 0.7921

Neural net 0.8369 0.8378 0.8389 0.8348 0.8384

Table 3.6 contains all AUC values for the 30-day mortality models on the training

set. Values of Table 3.7 shows the results on the validation set.

At 5% significance level, the differences were non-significant between regression

and neural network, but they were significant between both and decision trees (in all

imputations). To assess the differences between the methods, pairwise differences of

performance measures are calculated across resamplings and checked if they’re equal

with zero in expected value using a Welch corrected t-test with Bonferroni adjustment

[96] for multiplicity.
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Table 3.7: ROC AUC values of the 30-days models, validation set

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5

Regression 0.8347 0.8328 0.8350 0.8388 0.8319

Decision tree 0.7703 0.7762 0.7771 0.7752 0.7745

Neural net 0.8357 0.8335 0.8337 0.8398 0.8326

Random Forest results

Table 3.8 shows the resulted ROC AUC values of Random Forest models for each

imputations in case of 30-day mortality as target variable.

Table 3.8: ROC AUC values of Random Forest models, 30-day mortality

Model Nr. Training set Validation set

#1 0.845 0.850

#2 0.844 0.847

#3 0.846 0.842

#4 0.839 0.854

#5 0.842 0.844

The average for 30-day mortality is 0.843 for training set and 0.847 for validation

set. In case of the highest AUC (Model #3) on training set, the best treshold is 0.090

(Specificity: 0.756, Sensitivity: 0.789); while it is 0.103 (Specificity: 0.790, Sensitiv-

ity: 0.765) for the highest AUC value on the validation set (Model #4). ROC curves of

these best models on training and validation sets are displayed on Figure 3.8.

We can state that, there is no significant difference exists between the predictive

power of models trained on different imputations. The RF models represent a sta-

ble learner as the standard deviation for the 30-day models are 0.0029 (training) and

0.0047 (validation). These numbers are 0.0021 and 0.0036 for the 1-year models.
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Figure 3.8: ROC curves of the best models on training and validation sets, 30-day

For all 10 models, 3 proved to be the best value for mtry, the number of variables

randomly sampled as candidates at each split. Next to 3, with 2 and 5 almost the

same result (¡1% difference) was achieved. During parameter-tuning, ntree was held

constantly at 500, as the default number of small, weak trees to grow. (Here as well,

ROC was used to select the optimal model using the largest value.)

In comparison with the decision tree models, we can state that, significant im-

provement can be reached with Random Forest on the same dataset. Figure 3.9 and

3.10 plots the ROC curves of both models; the AUC on the figures are the highest
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Figure 3.9: ROC curves all Decision Tree and Random Forest models, validation set,

30-day

values from DT and RF models.

The numerical differences between the DT and RF models are the following: im-

provement of 5.5% and 7.3% (training and validation) for 30-day models; 8.1% and

9.2% (training and validation) when predicting 1-year mortality.

GBM results

Table 3.9 shows the resulted ROC AUC values of GBM models for each imputation

in case of 30-day mortality as the target variable.
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Figure 3.10: ROC curves all Decision Tree and Random Forest models, validation set,

1-year

The average for 30-day mortality is 0.847 for training set and 0.839 for validation

set. The highest AUC on the training set is reached by Model #5, here the best thresh-

old is 0.118 (Specificity: 0.800, Sensitivity: 0.734); while it is 0.102 (Specificity:

0.759, Sensitivity: 0.778) on the best-performing model on the validation set (Model

#4). ROC curves of these best models on training and validation sets are displayed in

Figure 3.11.

Ensembled results
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Figure 3.11: ROC curves of the best models on training and validation sets, 30-day

In Table 3.10 I summarized the ROC AUC values of the individual and ensem-

bled models for 30-day mortality. All values were calculated on the corresponding

Table 3.9: ROC AUC values of GBM models, 30-day mortality

Model Nr. Training set Validation set

#1 0.847 0.841

#2 0.848 0.838

#3 0.847 0.837

#4 0.844 0.844

#5 0.849 0.835
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validation datasets.

Table 3.10: ROC AUC values of the 30-days models, validation set.

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5 Avg

GBM 0.8411 0.8381 0.8375 0.8443 0.8346 0.8391

RF 0.8499 0.8472 0.8416 0.8528 0.8436 0.8470

NN 0.8358 0.8334 0.8353 0.8398 0.8326 0.8354

Ensembled 0.8592 0.8542 0.8517 0.8602 0.8522 0.8555

Table 3.11: ROC AUC values of the 1-year models, validation set.

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5 Avg

GBM 0.8169 0.8202 0.8251 0.8178 0.8246 0.8209

RF 0.8323 0.8332 0.8392 0.8312 0.8384 0.8349

NN 0.8134 0.8166 0.8234 0.8140 0.8224 0.8180

Ensembled 0.8358 0.8371 0.8439 0.8349 0.8432 0.8390

Figure 3.12 depicts the performance of all the four models in a ROC curve while

numerical differences between the methods with 99.2% confidence intervals are shown

on Figure 3.13, both for a randomly selected case (30-day mortality as target variable

and the first imputation was selected). Table 3.12 reports the standard deviation be-

tween the ROC AUC values of the separate models trained on the different imputa-

tions.

Table 3.12: Standard deviation of the ROC AUC values of imputations per model type

and target variable.

GBM RF NN Ensembled

30-day models 0.0037 0.0045 0.0028 0.0040

1-year models 0.0038 0.0037 0.0047 0.0043
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Figure 3.12: Performance of our Neural Network, Random Forest, Generalized

Boosted and Ensembled models.

Target: 30-day mortality, dataset: Imputation #1, validation set.

3.2.8 Results - 1-year mortality

The 1-year mortality rate for the whole dataset (n = 47,391) was 19.74%.

Regression, Decision Tree, Neural network results

In the training sets, I achieved an average of 0.754 as ROC AUC for decision tree

models, 0.8194 for neural net models and 0.8109 for regression models. The standard

deviation of AUC was the same as in case of 30-day mortality: for neural net and

regression models, it was negligible (<= 0.001), but the tree models’ was 0.025.
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Figure 3.13: Numerical differences between our Neural Network, Random Forest,

Generalized Boosted and Ensembled models. Target: 30-day mortality, dataset: Impu-

tation #1, validation set.

Figure 3.14 depicts the performance of the models in all imputations and both

target variables, while Table 3.13 contains the corresponding AUC values for the 1-

year mortality models on the training set. Values of Table 3.14 shows the results on

the validation set.

Again, the differences were non-significant between regression and neural net-

work, but they were significant between both and decision trees.
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Table 3.13: ROC AUC values of the 1-year models, training set

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5

Regression 0,8207 0,8200 0,8167 0,8212 0,8167

Decision tree 0,7208 0,7666 0,7512 0,7716 0,7615

Neural net 0,8210 0,8204 0,8170 0,8215 0,8171

Table 3.14: ROC AUC values of the 1-year models, validation set

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5

Regression 0,8128 0,8163 0,8229 0,8138 0,8221

Decision tree 0,7082 0,7525 0,7490 0,7502 0,7567

Neural net 0,8134 0,8166 0,8234 0,8140 0,8224

Random Forest results

Table 3.15 shows the resulted ROC AUC values of Random Forest models for each

imputations in case of 1-year mortality as target variable. This means an average of

0.835 on training set and 0.836 on validation set.

Table 3.15: ROC AUC values of Random Forest models, 1-year mortality

Model Nr. Training set Validation set

#1 0.837 0.833

#2 0.837 0.834

#3 0.832 0.839

#4 0.836 0.832

#5 0.834 0.840

In case of the highest AUC (Model #1) on validation set, the best threshold is

0.157 (Specificity: 0.730, Sensitivity: 0.797); while it is 0.165 (Specificity: 0.747,

Sensitivity: 0.780) for the highest AUC value on the validation set (Model #5). ROC
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Figure 3.14: ROC curves of the best models on training and validation sets, 1-year

curves of these best models on training and validation sets are displayed on Figure

3.14.

GBM results

Table 3.16 shows the resulted ROC AUC values of GBM models for each imputa-

tion in case of 1-year mortality as the target variable. This means an average of 0.828

on the training set and 0.821 on the validation set.

The highest AUC on the training set is reached by Model #1, here the best threshold
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Table 3.16: ROC AUC values of GBM models, 1-year mortality

Model Nr. Training set Validation set

#1 0.829 0.817

#2 0.829 0.820

#3 0.826 0.825

#4 0.829 0.818

#5 0.825 0.825

is 0.167 (Specificity: 0.708, Sensitivity: 0.791); while it is 0.200 (Specificity: 0.760,

Sensitivity: 0.742) on the best-performing model on the validation set (Model #5).

ROC curves of these best models on training and validation sets are displayed in Figure

3.15.

We used grid search to find the best possible values for the model’s hyperparam-

eters. Our final models reaching the best predictive power used 20.000 for the total

number of trees to fit; 2 as the maximum depth of each tree; 0.001 as the shrinkage

parameter; and the best value for the minimum number of observations in the terminal

nodes of the trees proved to be 20.

Ensembled results

In Table 3.11 I summarized the ROC AUC values of the individual and ensembled

models for 1-year mortality.

Table 3.12 reports the standard deviation between the ROC AUC values of the

separate models trained on the different imputations.
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Figure 3.15: ROC curves of the best GBM models on training and validation sets, 1-

year

3.2.9 Results - Variable Importance

Variable importance, in general, refers to a measure of how much a model uses a

given variable to make accurate predictions. In this subsection, I deal with the variable

importance values for each individual and the ensembled model.

Since the definitions and the methods of calculating the variable importance in

separate model types differ, instead of listing the exact feature importance values for

each model type, relative importance is used: the position of the given feature on the

list of the most important fields. With using relative importance it becomes possible

to compare the most important features of different models types, i.e. we can make a

global order between the variables over the different models.
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As multiple imputations were used, I aggregated variable importance values in the

imputations in the following way: summed up all the relative importance values for

each field for a given target variable and for a given model type, then divide this value

by the number of imputations. The resulted value represents the relative importance of

the given feature, and in this number, all the imputations added their effects.

The aggregated and relative values of feature importance in descending order for

the 30-day models are the following:

1. GBM: Cardiogenic shock (36.3), Age (21.1), Abnormal level of creatinine (10.4),

Percutaneous Coronary Intervention (6.7), Prehospital reanimation (6.6)

2. Random Forest: Age (31.1), Cardiogenic shock (14.2), Smoking = never (13.5),

Smoking = quit (13.3), Hyperlipidaemia (6.6)

3. Neural net: Age (19.8), Cardiogenic shock (15.2), Percutaneous Coronary Inter-

vention (9.6), Abnormal level of creatinine (9.1), Prehospital reanimation (7.4)

4. Ensembled: Age (26.1), Cardiogenic shock (15.7), Smoking = never (8.6), Smok-

ing = quit (8.4), Abnormal level of creatinine (7.4)

The aggregated and relative values of feature importance in descending order for

the 1-year models are the following:

1. GBM: Age (34.1), Cardiogenic shock (16.9), Abnormal level of creatinine (11.9),

Percutaneous Coronary Intervention (10), Heart failure (7.8)

2. Random Forest: Age (36.6), Smoking = never (12.4), Smoking = quit (12), Car-

diogenic shock (8.2), Abnormal level of creatinine (6.5),

3. Neural net: Age (23.6), Cardiogenic shock (10.9), Percutaneous Coronary In-

tervention (10.7), Abnormal level of creatinine (9.1), Prehospital reanimation

(7)
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4. Ensembled: Age (30.8), Cardiogenic shock (10.6), Abnormal level of creatinine

(8.3), Percutaneous Coronary Intervention (7.3), Smoking = never (7.3), Smok-

ing = quit (8.4), Abnormal level of creatinine (7.4)

3.2.10 Conclusions

In the current thesis, I investigated if there is a competitive opponent for the mostly

used and trusted regression in mortality prediction on a realworld, unfiltered dataset

with AMI patients. The target variables were the 30-day and the 1-year mortality.

After applying several steps in the phase of data preparation and used 5 imputations to

finalize the dataset - the average of the corresponding ROC AUC values of the selected

models were compared against the others.

Result achieved with feed-forward Neural network, Random Forest, GBM and En-

sembled techniques were similar to regression’s; and in some cases they even exceeded

the regression results by a few percent. Decision tree was not able to gain on this level

and was in the last place in case of all imputations and both target variables. The best

performer among all models was the Ensembled one, which uses the advantages of

both the classical regression and artificial intelligence-based solutions.

All of the three models perform better in case of 30-day mortality than 1-year

mortality. This difference can be partly accounted for the happenings between the 30

days and the 1 year: for instance, if the patient took the medications or not, if the

patient had an operation during that period or not – these all can affect the prognosis.

There are minimal differences between the models of the same type and same target

variable: the imputed data doesn’t affect the power of models significantly.

Thesis 2:

Thesis 2

I have developed machine learning models for predicting 30-day and 1-
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year mortality that met and in some cases exceeded the predictive capabilities

of regression.

Relevant own publications pertaining to this thesis:

[P-3] [P-4] [P-5] [P-6]

3.3 Comparing resampling methods (Thesis 3)

3.3.1 Introduction

In a comparative study I have investigated if a difference exists in the predictive power

of decision tree models tuned with different resampling methods. K-fold cross valida-

tion, repeated cross validation and bootstrap were used to find the optimal parameters

for each model on the dataset of Hungarian Myocardial Infarction Registry. The target

variable was the 1-year mortality and the differences were measured in 10 different

cases with different number of records on randomly selected, real-world datasets from

our original HUMIR dataset.

3.3.2 Data structure

I defined 10 dataset sizes to simulate and examine the differences between datasets

with variant number of records. The increasing number of records are 300, 500, 1 000,

1 500, 2 000, 4 000, 5 000, 10 000, 15 000 and 18 000.

After selecting 10 samples (without replacement) for each dataset size, multiple

imputation was applied resulting in 5 differently imputed datasets for each sub-dataset.

Then, each imputed dataset was used with each resampling method to train the decision

tree model. Figure 3.16 shows the structure of sub-datasets, imputations, resampling

methods and models.
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Figure 3.16: The structure of datasets and resampling methods.

I was using the metric of area under (AUC) Receiver Operating Characteristic

(ROC) curve to find the best parameters for the decision tree model in case of each

resampling method.

Each imputation was splitted into two parts: 80% of the data was used to generate

and train the models using the different investigated resampling methods (training set)

and 20% was used to check the generalization of the models (validation set). I used a

method for splitting which keeps the distribution of the target variable the same as in

the original dataset in case of each training and validation datasets.

3.3.3 Results

Figure 3.17 exactly shows how the models trained on different number of records

perform in case of a given resampling method. For example, with the smallest sub-

datasets (n = 300), the 10 different ROC AUC values (represented by dots) for BS, CV

and RCV can be read from the first plot.
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Mean is represented by a cross and it depicts a more general approach of the results:

it shows the average of ROC AUC values of models trained on the sub-datasets with

the same size. It can be read, that out of the 10 cases:

1. the RCV method is in the first place in all cases

2. the CV method is in the second place in 9 cases

3. the only case when the order between CV and BS is changed is the third (n =

1000)

Although the numerical differences between the performance of models with dif-

ferent resampling methods are small (between RCV and BS, the average of the differ-

ences is 0.0105, between RCV and CV, it’s 0.0031), an order can be establised between

them. In this dataset, RCV outperforms the other two resampling methods. CV was in

the second, while BS was in the third place in 90% of the cases.

Figure 3.17 shows two other facts as well:

1. in case of all resampling methods, the ROC AUC averages are continuously

growing – as we are having bigger datasets, the models get ”better”

2. as we are heading to bigger datasets, the deviation of a given method’s points

are continuously getting smaller – as we are having bigger datasets, the models

get more accurate and more reliable

As conclusion, we can state that, in the investigated dataset, repeated cross vali-

dation slightly outperforms cross validation and both have significantly better results

than models trained with bootstrap method. And, as we are having bigger datasets,

the predictive power of the models – regardless of the applied resampling method –

improves: the ROC AUC values continuously get higher with a smaller deviation.

Thesis 3:
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Figure 3.17: ROC AUC values and means of imputations (marked with crosses) for

each sub-dataset

Thesis 3

I have showed that in the case of decision trees, there are minimal differ-

ences between the resampling methods used to determine the tuning parame-

ters; and these differences disappear with a larger data set (n > 15000).

Relevant own publication pertaining to this thesis:

[P-7]
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4 Application

4.1 Aim of the development

For demonstrating a possible clinical application of the research results, I have de-

veloped a web-based application where visitors can check the prediction capability

of the given model. In short, through the application physicians can enter the patient

data, click on a button, than the predicted possibilities are shown. In the background,

in the process of prediction, the application is communicating with the original (R-

environment-based) modelling infrastructure to use originally developed models to

predict 30-days and 1-year mortality as outcomes.

4.2 Application structure

As it can be seen on Figure 4.1, the application structure consists of three layers:

1. User interface

2. Server-side application

3. Modelling environment

These three layers are in connection with each other to accomplish the whole mech-

anism from data collection until the display of the predicted values.

The role and function of the three layers are the follows:

1. The User interface is the public part of the software. It is a two-pager website

where visitors can fill in all the fields which will be used to predict the outcome

(called Form screen), and then see the predicted results (called Result screen).

The full and detailed list of requested fields are shown in Section 4.3.
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2. The Server-side layer receives the submitted field values, sends it to the third

layer via Command Line Interface, waiting until it predicts the outcome, receives

it, and finally displays the exact numbers

3. The prediction is made in the Modelling environment. It is our R-language based

environment which processes the received fields, loads one of our previously

developed predictive model, predicts the 30-day and 1-year mortality outcomes,

then sends it to the Server-side layer

4.3 Requested Fields

On the User interface layer of the application, fields are separated based on the groups

defined in Section 3.1.4. These fields are the predictors of the model, so they must

have in the same format as they were used earlier in the modelling phase. For this

reason, dropdowns (list of pre-defined values visitors can choose from) were applied

everywhere where it was possible.

Application fields of Group 1: General information about the patient are shown

on Table 4.1, fields of Group 2: Previous medical history are on Table 4.2, while Table

4.3 lists the fields of Group 3: Information about the pre- and in-hospital treatment.

For each field, next to the name, the field type, the possible values are shown as well,

together with the information that if it is mandatory to fill in the given field to start the

prediction.

Table 4.1: Fields of the developed application, Group 1

Field Field type Possible values Mandatory

Age Number Integer only Yes

Gender Dropdown Male or Female Yes
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From the full list of Group 1 attributes, Event ID, Patient ID and ZIP code were

eliminated in the process of data preparation with absolutely no usage; If the patient

alives and Date of death are parts of mortality as target variable so they cannot be used

in the modelling formula. As result, Gender and Date of birth (in the format of Age)

were kept as input fields in the application on the Form screen.

Table 4.2: Fields of the developed application, Group 2

Field Field type Possible values Mandatory

Myocardial Infarction Dropdown Yes or No Yes

Heart failure Dropdown Yes or No Yes

Hypertension Dropdown Yes or No Yes

Stroke Dropdown Yes or No Yes

Diabetes mellitus Dropdown Yes or No Yes

Peripheral artery disease Dropdown Yes or No Yes

Hyperlipidaemia Dropdown Yes or No Yes

Cardiogenic shock Dropdown Yes or No Yes

Smoked ever Dropdown Yes or No Yes

Smoking at the moment Dropdown Yes or No Only if Smoked ever is Yes

Each attribute from the full list of Group 2 fields were built in as input fields in the

application on the Form screen.

Since Level of creatinine and Treatment ID were eliminated from the attributes of

Group 3 in the process of data preparation; and the application automatically populates

the current date for Date of admission, 4 fields left from the full list of Group 3 as input

fields on the Form screen of the application.
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Table 4.3: Fields of the developed application, Group 3

Field Field type Possible values Mandatory

Prehospital reanimation Dropdown Yes or No Yes

Percutaneous Coronary Intervention Dropdown Yes or No Yes

Diagnosis Dropdown STEMI or NSTEMI Yes

Creatinine level Dropdown Normal or Abnormal Yes

4.4 Methods & Tools

The application was developed in R and PHP programming languages: User interface

and Server-side application was developed in PHP, HTML, Javascript and CSS; while

the Modelling environment was the original R language-based environment which

were used in the whole research to build the models. PHP was responsible for the

business logic, data receiving and sending, and HTML, Javascript and CSS were used

to build up the screens.

As the official documentation says, ”PHP (recursive acronym for PHP: Hypertext

Preprocessor) is a widely-used open source general-purpose scripting language that

is especially suited for web development and can be embedded into HTML” [97].

Although PHP is very popular (researches say that in February 2023, around 77.6%

of all the websites use PHP as server-side programming language [98]), it could have

been possible to use other languages as server-side language. Behind the selection of

PHP, the main reason was author’ several-years experience with it.

The current version of the application uses Command Line Interface as communi-

cation layer between the Server-side and the Modelling layer. The following two facts

made possible to interact between the two layers:
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Figure 4.1: Structure of the developed application

1. R scripts can be called through command line with calling the previously in-

stalled Rscript binary file

2. PHP can execute commands with its eval or shell exec function and can gather

the returned value

4.5 Results

The application is fully developed and working as it is described in this section. It

uses the previously published General Boosted Model to predict the 30-day and 1-year

mortality for field values added on the User interface layer. Figure 4.2 and Figure 4.3

shows to two screenshots about the User interface: the first is the form and the second

is the result screen.

4.6 Examples

To give some examples, here I list three scenarios, field values and the returned 30-day

and 1-year mortality results.

4.6.1 Example #1

The entered values of each input field of Example #1 and the resulted probabilities for

30-day and 1-year mortality can be seen on Table 4.4.
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Table 4.4: Application - Example #1

Field Field value

Age 65

Gender Male

Myocardial Infarction Yes

Heart failure Yes

Hypertension No

Stroke No

Diabetes mellitus No

Peripheral artery disease No

Hyperlipidaemia No

Cardiogenic shock No

Ever smoked? Yes

Stopped smoking? Yes

Percutaneous Coronary Intervention Yes

Prehospital reanimation Yes

Diagnosis STEMI

Abnormal level of creatinin No

Result - 30-day mortality 15.09%

Result - 1-year mortality 29.79%
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4.6.2 Example #2

The entered values of each input field of Example #2 and the resulted probabilities for

30-day and 1-year mortality can be seen on Table 4.5.

Table 4.5: Application - Example #2

Field Field value

Age 70

Gender Male

Myocardial Infarction Yes

Heart failure Yes

Hypertension Yes

Stroke Yes

Diabetes mellitus Yes

Peripheral artery disease Yes

Hyperlipidaemia Yes

Cardiogenic shock Yes

Ever smoked? No

Percutaneous Coronary Intervention Yes

Prehospital reanimation Yes

Diagnosis STEMI

Abnormal level of creatinin Yes

Result - 30-day mortality 51.65%

Result - 1-year mortality 63.49%
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Figure 4.2: Screenshot of the developed application, Form screen

Figure 4.3: Screenshot of the developed application, Result screen

4.6.3 Example #3

The entered values of each input field of Example #3 and the resulted probabilities for

30-day and 1-year mortality can be seen on Table 4.6.
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Table 4.6: Application - Example #3

Field Field value

Age 80

Gender Male

Myocardial Infarction Yes

Heart failure Yes

Hypertension Yes

Stroke Yes

Diabetes mellitus Yes

Peripheral artery disease Yes

Hyperlipidaemia Yes

Cardiogenic shock Yes

Ever smoked? Yes

Stopped smoking? No

Percutaneous Coronary Intervention Yes

Prehospital reanimation Yes

Diagnosis STEMI

Abnormal level of creatinin Yes

Result - 30-day mortality 68.3%

Result - 1-year mortality 83.66%
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4.7 Limitations & Solutions

Although the web-based application demonstrates a possible clinical application of

the research results in the current thesis, it is ready to use by physicians - the current

version has some limitations. Solving these limitations would make the software more

prepared to real-life situations.

One limitation is behind the communication of the User interface and the Server-

side layers. In the current version, it is managed through Command Line Interface

which solves this communication task - but only in the case if these two layers are

on the same physical machine. Our server-side code uses shell exec function to call

the Modelling environment, but this function cannot be used to call other resources

located on other physical server. To solve this issue, the communication could be made

via HTTP REST API, another interface which makes it possible for two separated

machines to securely communicate with each other via internet. Using HTTP REST

API it would be possible to separate Server-side and Modelling environment layers,

making the whole software infrastructure much more reliable. In this case, we would

have a simple website for User interface and the Modelling layer could be a dedicated

environment, like I had an Amazon instance in the process of model development (see

Section 2.4).

Another limitation is with the usage of Modelling layer. In the R code, first the sub-

mitted data is received, the given model object is loaded, the prediction is performed,

then we send the results back to the Server-side layer. In this process, the loading of

the given model object takes the most time. In my testing environment (Intel Core i3

processor, 12 GB memory) loading a GBM model takes about 15 seconds, so to load

both the 30-day and the 1-year model, it is around 30 seconds. The size of a GBM

model object is around 8MB (this is the smallest, that’s why I choosed this one for

testing), but the Ensembled’s is 386MB, and Regressions’ is 243MB. This relatively

large files sizes makes it extremely slow the loading process, so to transferring the
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whole software to a bigger instance would speed up the whole process.

Actually, these two mentioned limitations are in connection with each other: sep-

arating User interface and Server-side layers with transferring Modelling layer into a

server with higher computation resources would make the software much more reliable

and faster.
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5 Thesis list

Thesis group 1: In a methodological approach, I have discussed and analyzed the

data preparation of artificial intelligence algorithms on the dataset of the Hungarian

National Myocardial Infarction Register.

Thesis 1.1

At the international level, I have took a look at the official registries that

collect cardiovascular data; within this, I have highlighted the uniqueness of

the Hungarian National Myocardial Infarction Register and gave a ”literature

recipe” for the use of artificial intelligence methods.

Thesis 1.2

For the dataset of the Hungarian Myocardial Infarction Registry, I have

developed a data preparation procedure, with which the raw data became

suitable for participating in the implementation of the machine learning pro-

cess as input for the predictive models.

Relevant own publications pertaining to this thesis group:

[P-1] [P-2] [P-3]

Thesis 2:

Thesis 2

I have developed machine learning models for predicting 30-day and 1-

year mortality that met and in some cases exceeded the predictive capabilities

of regression.

Relevant own publications pertaining to this thesis:
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[P-3] [P-4] [P-5] [P-6]

Thesis 3:

Thesis 3

I have showed that in the case of decision trees, there are minimal differ-

ences between the resampling methods used to determine the tuning parame-

ters; and these differences disappear with a larger data set (n > 15000).

Relevant own publication pertaining to this thesis:

[P-7]

85



6 Conclusions

This dissertation has presented several practical approaches for the usage of machine

learning models in medicine, especially in mortality prediction. During my research,

I have been working continuously with a dataset originated from the Hungarian My-

ocardial Infarction Registry (HUMIR); on a full, unfiltered extract from 2014 to 2016,

containing 47,412 patients hospitalized with acute myocardial infarction.

In the first thesis group, I have reviewed the Hungarian and three ongoing Euro-

pean myocardial projects, then developed a way how the Hungarian dataset can be

transformed to be able to use it as inputs for machine learning algorithms.

Then, as stated in the second thesis, I have developed several machine-learning

models based on Decision Tree, Neural Networks, Logistic Regression, Random For-

est, Generalized Boosted Model and Ensembled algorithms to predict 30-day and 1-

year mortality on the same HUMIR-dataset. The main challange I was facing was if

there is a competitive opponent for the mostly used and trusted regression in the world

of machine learning algorithms.

The published models achieved, and in some cases even exceeded, the predictive

capabilities of regression generally (and rightfully) accepted in the field – thus demon-

strating the raison d’être of machine learning solutions in the scientific field and in the

Hungarian register.

The third thesis has presented a more specific question: I have stated that there is

no significant difference in the predictive power of the decision tree models tuned with

different resampling methods on the data of the Hungarian register.

In Section 4, I have presented how the research will continue: as an applied infor-

matics area, it is important to build the knowledge back to medicine. For demonstrating

a possible clinical application of the research results, I have developed a web-based ap-

plication where visitors can check the prediction capability of the given model. With

submitting the patient data, the predicted 30-day and 1-year mortality possibilities for
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the given models are shown in a few moments.

Although the developed application demonstrates a possible clinical use for the re-

searches I have made, there is still room for improvements: separating Server-side and

Modelling environment layers with HTTP REST API would be a desirable solution as

it can make the whole software infrastructre more flexible and fault-tolerant. Another

improvement would be a bigger hardware instance with more resources.
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[P-1] Péter Piros, Rita Fleiner, Tamás Ferenci, Péter Andréka, Hamido Fujita, Péter
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