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Dr. Péter Galambos

Budapest
2018



Preliminaries

Robust stability and optimality are central paradigms of model based con-
troller design. It is essential to ensure the fast, low-cost operation of prac-
tical applications, reserving the robustness against disturbances, signal
noises and parameter uncertainties. For purely linear systems, the LQ,
H2, H∞ control criteria and pole placement method are essential for sys-
tem analysis and synthesis.

Parameter dependency and nonlinearity are often inevitable in prac-
tical systems. The LPV/qLPV modelling methodology provides an ap-
proach to handle these systems similarly as linear systems.

Linear Parameter Varying (LPV) modelling

There is a wide class of systems that can be described with a parametrized
linear models as ẋ(t)

y(t)
z(t)

 = S(p(t))

x(t)
u(t)
w(t)

 ,
where the state variables are denoted by x(t), the input signals by u(t),
the noise or disturbances by w(t), the measured output y(t), the perfor-
mance output z(t), and the S(p(t)) system matrix can be partitioned to
A(p(t)), B(p(t)), C(p(t)), D(p(t)) etc. system matrices, and is defined
over a hyper-rectangular parameter domain:

p ∈ Ω =
[
p
1
, p1

]
× · · · ×

[
p
N
, pN

]
⊂ RN .

qLPV realizations of parameter-varying nonlinear system

Nonlinear systems can also be described as ”quasi-LPV” (qLPV) systems.
The concept is the clear extension of local linearization of the state space,
where only the x(t) ≈ xd(t) case is modelled for control analysis or
synthesis. The disadvantages of the concept are the conservatism and the
non-uniqueness of the realizations.
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LMI based controller design

In the modern model based control, Lyapunov’s second, so called direct
method plays a key role. It applies positive definite functions for stability
verification of autonomous and controlled systems called later Lyapunov
functions.

This way, by considering quadratic Lyapunov functions as V (x) =
xTPx, the stability criteria for linear systems leads to definite conditions
on matrices. For example, considering an autonomous linear system

ẋ(t) = Ax(t),

it is stable if and only if there exist P matrix such that,

ATP + PA ≺ 0, P = PT � 0.

The Ricatti-equations of LQ, H2, H∞ criteria can be easily written as
LMIs, and the pole placement constraints as LMI region conditions. The
power of this approach is the opportunity to apply multiobjective con-
troller design: The criteria (e.g., constraints on the poles, H∞ disturbance
rejection constraints and H2 optimal constraint) can be applied together.

These definite, semi-definite conditions had hardly been solved until
the convex nature of the Linear Matrix Inequalities (LMIs) was discov-
ered. After the ellipsoid method, the interior point methods were the first,
practically relevant polynomial solver.

There are two directions of taking into consideration the uncertain-
ties/parameter dependencies of the linear model: The so called norm
bounded description and polytopic envelopes. It is important to denote,
that in these cases, the – practically absolutely relevant – robust output
feedback design is not a convex problem although the robust/optimal state
feedback and the full-order dynamic output feedback methods without
uncertainties can be solved via LMI optimisation.

LPV/qLPV models with norm bounded uncertainty

The norm bounded uncertainty description is a popular way to take into
account a parameter varying S(p) matrix or a connected uncertain sub-
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system with bounded H∞ norm via the well-known Linear Fractional
Transformation. Then the LMI based controller design can be applied or
the popular DK, DGK iteration based controller design method for robust
output feedback controller design.

LPV/qLPV models with polytopic uncertainty

The variety of the system matrices can also be handled by constructing an
enclosing polytope around it. For example, considering a parameter vary-
ing autonomous LPV model, it can be given with polytopic uncertainty
as

ẋ(t) = A(p(t))x(t), where A(p) ∈ Co(A1, ...,AJ).

Then its quadratic stability can be verified by considering the V (x) =
xTPx Lyapunov-function candidate. Its derivative is negative definite
for all
A ∈ Co(A1, ...,AJ) if and only if

PAj + AT
j P ≺ 0 ∀j = 1, ..., J.

The polytopic model based control design is syntactically equivalent
to control design for the popular Takagi-Sugeno systems. In the past two
decadess plenty of methods were published considering a wide range of
control goals and possible relaxations of conservatism, that comes from
the presence of irrelevant systems within the polytope and from applica-
tion of simple quadratic Lyapunov functions.

Polytopic LPV/qLPV models based controller design

In polytopic LPV/qLPV models, it is exploited that the actual S(p(t))
linear dynamics is known within the Co(S1,S2, ...,SJ) polytopic domain
and it can be described as

S(p) =
J∑
j=1

hj(p)Sj ,
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where the hj(p) membership functions denote convex combinations. By
applying parameter dependant matrices in the controller candidate with
the same membership functions, we get the so called Parallel Distributed
Compensation (PDC).

As an example for more complex control criteria, let us recall the
Bounded Real Lemma forH∞ state feedback design. The following form
allows being the M(p), X(p) variables on higher summation, as well.

Lemma 1 (Bounded Real Lemma for LPV models) For the system with
the controller u(t) = M(p(t))X−1(p(t))x(t), the H∞ condition

||Tz,v||∞ < γ

holds for all p(t) ∈ Ω trajectories, if for functions X(p), M(p), the
following conditions hold for all p ∈ Ω:

X(p) � 0,−Sym(A(p)X(p) + Bu(p)M(p)) ∗ ∗
BT
v (p) γI ∗

C(p)X(p) + Du(p)M(p) Dv(p) γI

 � 0,

Ẋ(p) = 0.

By applying variables on higher polytopic summations, the derived crite-
ria are also on higher polytopic summation, as well.

The methods can be relaxed by applying membership function-depen-
dant conditions. There are stability criteria for cases Ẋ(p) 6= 0 if the
|ẇj(p)| values can be bounded and line-integral type Lyapunov–function
candidates, where the derivative condition does not appear. Furthermore,
the methods are published for descriptor models as well.

There are approaches, especially for discrete time systems, where the
variables of the controller and the Lyapunov function are independent. In
these cases, the measurement/estimation opportunities do not constrain
the multiplicities in the Lyapunov function candidate. The discrete-time
case is relaxed by applying delayed Lyapunov-function and the uncer-
tainty of the model can be taken into account by combining the method
with the norm-bound uncertainty description.
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To handle systems with time delay, Lyapunov-Krasovski functional
or Razumikhin theory based methods can be applied.

It is important to denote, that the non-convex nature of robust output-
feedback design appears in this case as well. It results in Bilinear Matrix
Inequalities motivating research on approaches to consider convex subsets
of the solutions and local optimisation methods on BMIs.

TP model transformation based controller design

Baranyi proposed a polytopic form, the Tensor-Product model where the
scalar parameter dependencies are represented in a separated way, and
they have their own polytopic structures. The corresponding methodology
consists of three main parts.

I. Extension of Lathauwer’s tensor algebra for multivariate functions.
The concept of tensor algebra is generalized for multivariate functions
resulting in the tensor product functions. Here the product of a tensor
(B ∈ HI1×···×IN ) with a matrix (U ∈ RM×In) along the nth dimension is
denoted as A = B ×n U, and it results in the A tensor of size I1 × · · · ×
In−1 ×M × In+1 × · · · × In and for its elements

Ai1,...,in−1,m,in+1,...,iN =

In∑
in=1

Bi1,...,iNUm,in .

Furthermore, the sequential tensor products are denoted as

A
3
�
i=1

U(n) = A×1 U
(1) ×2 U

(2) ×3 U
(3).

Now the tensor product function can be defined as:

Definition 2 (Tensor Product (TP) function) The following form

f(p) = B
N
�
n=1

w(n)(pn),
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of a real f : Ω → R function is called TP function, where the real B
tensor has sizes I1 × · · · × IN , and the n-mode weighting functions are
w(n) : [p

n
, pn]→ RIn , respectively.

In general, multivariate functions cannot be written into TP form with
finite In sizes. See function f(p) = 1/(p1 + p2).

Definition 3 (HOSVD based TP form) The following TP form

f(p) = SHOSV D
N
�
n=1

u(n)(pn),

where SHOSV D ∈ RI1×···×IN and u(n) : [p
n
, pn] → RIn is called

HOSVD based, if for all n = 1..N , the scalar weighting functions within
u(n)(pn) are orthonormal, and the subtensors of SHOSV D are orthogo-
nal and ordered by their Frobenius norm.

The HOSVD-based form is canonical because of its uniqueness properties
and it can be generally computed from an arbitrary TP form. Furthermore
it allows the reduction of n-mode size with minimal error (in terms of
Frobenius-norm).

The goal of TP model transformation is to transform a given function
f(p) into HOSVD based TP form in the investigated Ω parameter space.
To achieve this, an equidistant grid is defined on Ω and the function is first
described in its points and then it is reconstructed between the points.
Method 4 (TP model transformation)
Step 4.1 (Discretisation) A tensor is constructed that contains the value
of the function on an equidistant grid over the investigated parameter
domain.

Step 4.2 (Extracting the discretised TP function) A discretised TP func-
tion is obtained by applying HOSVD on the discretised tensor.

Step 4.3 (Reconstruction of the continuous TP function) The best approx-
imation of the weighting functions between the gridpoints (in terms of
Frobenius-norm) is determined. In practice, usually linear interpolation
is applied instead.
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In some cases, the function can exactly be described only via a TP
function with sizes up to – theoretically – infinity. Their exact numerical
reconstruction is not possible with finite Mn gridsizes, only approximat-
ing descriptions can be achieved.

The resulted core tensor always holds the orthogonality and order-
ing properties. But the reconstructed weighting functions do not hold or-
thonormality. The error of orthogonality converges to zero as Mn values
are increased to infinity, but their norms converges to zero in the mean-
time.

II. Algorithms to derive Polytopic Tensor Product form from the
HOSVD-based one.

The primary motivation of the methodology was its control oriented
application: to derive polytopic models for LPV/qLPV models as

S(p) = S
N
�
n=1

w(n)(pn),

where S ∈ RI1×···×IN×O×I and the values of w(n) : [p
n
, pn] → RIn

functions denote convex combinations, that is called Polytopic TP model.
It is derived from the HOSVD-based TP form via algebraic manipu-

lation of the weighting matrices as

u(n)(pn) = w(n)(pn)T(n),

where T(n) is called transformation matrix.
By performing the operation for all n = 1..N the polytopic TP form

can be obtained as

f(p) = SHOSV D
N
�
n=1

(
w(n)(pn)T(n)

)
=

=

(
SHOSV D

N
�
n=1

T(n)

)
︸ ︷︷ ︸

S

N
�
n=1

w(n)(pn).
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There are methods to derive the HOSVD based form without con-
structing the (typically large) discretised tensor and to decrease the com-
putational load by performing truncations in sequences of HOSVD.

Identification is used in discretisation step for time-delayed systems
in the so called TPτ model transformation and for other description forms
in the so called Multi TP model transformation. However if different state
variables are used in the gridpoints, the LMI based control analysis and
synthesis does not guarantee the stability and the performance.

III. Polytopic model based controller design methods. By exploiting
that the Polytopic TP form is a special polytopic model, it can be rewritten
as

S(p) = S
N
�
n=1

w(n)(pn) =
R∑
r=1

hr(p)Sr,

and the methods elaborated for polytopic/Takagi-Sugeno models can be
immediately applied.

9



Motivation of the Theses

As the previous part has showed, the TP model transformation based con-
troller design was born by the marriage of HOSVD for functions, algo-
rithms to derive Polytopic TP model from the HOSVD-based TP form
and the polytopic model based control analysis and synthesis methods –
inheriting their properties.

During my master’s diploma research and period of the Young Re-
search Award, I have applied it on different non-linear and time-delay
feedback problems:

1. A haptic telemanipulator arm with time-delayed communication
and unknown remote environment, where the effect of time-delay
must be decreased because it influences the sensed properties of
the remote environment and may cause unstable behaviour. [KJ-10,
KJ-11, KJ-12, KJ-13]

2. The prototype of so called dual-excenter actuator. That is a spe-
cial vibration actuator that is able to work at independently chosen
frequency and amplitude in contrast to the widely used vibration
devices. Its control is challenging because of its highly non-linear
behaviour and the unknown working environment. [KJ-2]

3. Academic systems as inverted pendulum and translational oscillator
with a rotational actuator (TORA). [KJ-6, KJ-7, KJ-9]

The development and the corresponding theoretical and numerical
supervisions dredged up more practical demands and sources of conser-
vatism. The following questions and problems had arisen:

– The separation of parameter dependencies (defined in the TP func-
tion) is not exploited during the controller design, but it can blow
up the complexity of the model (measured here as the n-mode sizes
of the HOSVD-based form) although the property is used only to
construct more simple representation of the form.
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– Previous methods to obtain polytopic forms are rarely optimised
and they derive – geometrically – simplex polytopes. It is not inves-
tigated how their properties influence the achievable performance
and how it could be made better in general, and how the speciali-
ties of the actual control problem could be taken into account.

– After complexity reduction, the omitted part should be also taken
into consideration in control design, otherwise the applied analy-
sis or synthesis method cannot provide guarantee for stability and
performance.

– The benefits of HOSVD-based form are its compactness and pos-
sibility for complexity reduction with minimal error - although this
error does not characterize the obtained polytopic form if pseudo
inverse was applied. Furthermore, centralisation and reSVD is nec-
essary for deriving polytopic form. These reasons question the ne-
cessity of the HOSVD-based form and suggest that an other inter-
mediate form should be defined that directly leads to the Polytopic
TP forms.

Furthermore, the following computational and theoretical reasons:

– The formalism is problematic for non-scalar functions..

– The error of numeric reconstruction converges to zero only as the
density of discretisation tends to infinity. There is always bias in
the approximation.

– The generalization from discretised to continuous weighting func-
tions is laborious.

Motivated by these reflections and by benefits of the former structure,
the theses build up the methodology from scratch to construct a theo-
retically substantiated solid framework with plenty of tools for various
practical problems avoiding the unnecessary conservatism.

The dissertation first presents that the derivation of polytopic forms,
that leads to determination of enclosing polytopes for point sets on a usu-
ally higher dimensional affine subspace and it concludes the specialities
of simplex and non-simplex enclosing polytopes.
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Then it extends the definition of Polytopic TP model to avoid the un-
necessary separations in such a way, that it can depends on arbitrarily
chosen parameter sets. For its derivation a multi-affine form is defined
and then only enclosing polytopes must be determined. The new defi-
nition allows using parameter dependencies with higher multiplicities to
apply it for constructing LMI criteria, and to handle the error of necessary
complexity reductions caused by separation.

It describes how the vertices of polytopic models influence the achiev-
able performance, furthermore, it introduces new methods to derive (near)
Minimal Volume Simplex and Non-Simplex enclosing polytopes and gives
methods to take into account the control properties of the considered
LPV/qLPV models.

Finally, it establishes the Polytopic TP model based control analysis
and synthesis by introducing that the variables can be also in Polytopic TP
form on the same multi-polytopic structure, but with arbitrary multiplic-
ities. This way, special controller and Lyapunov-function candidates can
be used, that does not depend on certain parameter sets, and with higher
multiplicities on other ones. The introduced TP algebra can be used to de-
scribe the derived definite conditions, and a recursive method is provided
to extract them into LMIs/BMIs.

The proposed control design workflow and the corresponding meth-
ods are illustrated in Fig. 1.

LPV / qLPV
model

Affine TP
model

Polytopic TP
model

TP
controller

Thesis 1 (ASVD based polytopic
description)

Thesis 3 (Affine Tensor Product
Transformation)

Thesis 2 (Polytopic TP description via
Affine TP form)

Thesis 4 (Enclosing Polytope Generation
and Manipulation)

Thesis 5 (Polytopic TP model-based Control
Analysis and Synthesis)

Enclosing polytope manipulation

Redefine the parameter sets

Figure 1: The proposed control design workflow and the corresponding
theses
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New Scientific Results

Thesis 1. ASVD based polytopic description
The Affine Singular Value Decomposition of multivariate functions

f(x) =
D+1∑
d=1

advd(x)

provides a factorization with the following properties:

- It represents the affine structure of the image set by describing the
affine hull via an the offset (aD+1) and an orthogonal, ordered basis
(a1, ..., aD) in such a way, that the related homogeneous coordinate
(v(x)) are orthonormal functions as in the SVD.

- Through ASVD the derivation of polytopic description can be trans-
formed into a geometrical problem: Determination of enclosing
polytope for a D dimensional point set (image of v(x)).

- It is a canonical representation, because it shows uniqueness in
terms of similar as the SVD.

- The ASVD form is suitable for complexity reduction with minimal
error (in terms of Frobenius norm) by omitting the last basis direc-
tions, where the complexity is understood as theD dimension of the
affine hull.

The proposed method is suitable for numerical reconstruction through
analytical (exact) or discretisation based (approximating) initial forms.

Corresponding publications: [KJ-1, KJ-3, KJ-7].
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Thesis 2. Polytopic TP description via Affine TP form
The former definition of Polytopic TP form can be relaxed along the

following properties:

- arbitrary parameter sets can be used instead of complete separa-
tion of the scalar parameter dependencies,

- parameter dependencies can be used with arbitrarily high multi-
plicities to serve the further optimisation structures directly,

- the formalism is extended to Hilbert-spaces in general, by defining
matrix-tensor product to Hilbert spaces.

Consider the function f(p) : Ω → H . According to the chosen pa-
rameter sets (denoted as p1,p2, · · · ⊆ p and their domains accordingly
as Ω1,Ω2, . . . ), the TP form

f(p) = F ×1 w
(1)(p(1))×2 w

(2)(p(2)) . . .

where w(k) : Ωk → RJk , and F ∈ HJ1×J2×...

is called a Polytopic TP form if

w(k)(p(k))1Jk×1 = 1, w(k)(p(k)) ≥ 0 ∀p(k) ∈ Ωk.

The extended polytopic TP form can be derived through Affine TP
form

f(p) = Faff ×1 v
(1)(p(1))×2 v

(2)(p(2)) . . . ,

in which the dependencies on the parameter sets show ASVD structures.
The derivation requires enclosing polytopes for the weighting functions
in the euclidean space with the given dimension.
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If the parameter sets are disjoint, the following statements hold:

- The complexity (geometric dimension) of the dependencies on the
parameter sets can be reduced with minimal error (in terms of
Frobenius-norm).

- The representation is canonical, since it inherits the uniqueness
properties of ASVD.

Corresponding publications: [KJ-1, KJ-4].
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Thesis 3. Affine Tensor Product Transformation
The proposed Affine Tensor Product Transformation provides numer-

ical methods to reconstruct the Affine TP form for multivariate functions
considering arbitrary parameter sets:

- Exact TP form can be obtained if the dependencies from the param-
eter sets can be separated analytically.

- In other cases, approximating TP form can be obtained by con-
structing the initial TP form

f̂(p) = D
K
�
k=1

α(k)(p(k)) =

M1∑
m1=1

· · ·
MK∑
mK=1

dm1,...,mK

K∏
k=1

α(k)
mk

(p(k))

via discretisation.

p1p1 p1

p2

p2

p2

p3

p3

p3

p
(1)

=[ ]p p1 2

p =
(2)

p3

g
(2)

m2

g
(1)

m1

[ ]g
(1) (2)

gm2m1

p3

p3

p3

g
(2)

m2

p3

1 (2)
m2

0

p1p1 p1

p2

p2

p2

g
(1)

m1

1

0

(1)
m1

Figure 2: Illustration of discretisation via multivariate interpolatory func-
tions
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Furthermore, the exactness of the derived (discretised or complexity
reduced) Affine TP form

f̂(p) = F̂
K
�
k=1

v(k)(p(k))

can be restored by determining the ASVD of its error (without parameter
separation)

f(p)− f̂(p) = F̃ ×K+1 v
(K+1)(p)

and inserting it in the Affine TP form as a new parameter dependency:

f(p) =

(
F̂ ×K+1 1

(DK+1) + F̃
K
�
k=1

1(Dk)

)
︸ ︷︷ ︸

F

K
�
k=1

v(k)(p(k))×K+1v
(K+1)(p),

where 1(D) =
[
01×D 1

]T
.

Corresponding publications: [KJ-1, KJ-4, KJ-8].
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Thesis 4. Enclosing Polytope Generation and Manipulation

The envelope of polytopic models usually includes a larger set of LTI
systems than the LPV/qLPV models highly increasing the conservative-
ness of the controller design. It is essential to avoid or at least minimize
their presence of additional systems without significantly increasing the
number of vertices.

This aspect can be taken into consideration through a two phase ap-
proach in order to maximize the achievable performance with the poly-
topic model:

1. First, the polytopic model is generated by determining the enclosing
polytopes based on simple geometric aspects.

2. By analysing the actual polytopic model, geometric manipulations
are performed on the enclosing polytopes to achieve satisfying con-
trol performance.

According to this concept, the following enclosing polytope generation
and manipulation methods are proposed:

- Generation of Minimal Volume Simplex (MVS).

- Manipulation of the MVS by applying constraints to close some of
the vertices to the convex hull.

- Deriving Non-Simplex enclosing polytopes by cutting regions off
from the polytope by one or more halfspaces.

- Local Minimization of volume of Enclosing Non-Simplex polytopes.

The methods are elaborated for higher dimensional spaces in general and
the minimal volume has only approximating meaning because the volume
minimization problem is highly non-convex.

Corresponding publications: [KJ-3, KJ-6, KJ-7, KJ-9].
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Thesis 5. Polytopic TP model-based Control Analysis and
Synthesis

The concept of Polytopic Tensor Product (TP) Model based control
analysis and synthesis has been revisited and renewed by proposing the
use of TP-structured variables in the definite conditions derived from the
applied control criteria. For TP forms that can depend on multivariate
parameter sets (optionally with two times or higher multiplicities)

X(p) = X ×1w
(1)(p(1))×2 w

(1)(p(1)) · · · ×M1 w
(1)(p(1))︸ ︷︷ ︸

M1

×M1+1w
(2)(p(2)) . . .︸ ︷︷ ︸
M2

. . . ,

a compact TP formalism was proposed

X(p) = X
K(M)

�
k=1

w(l(k,M))(p(l(k,M))),K(M) =
∑
i

Mi,

where

l(k,M) = i if

i−1∑
a=1

Ma < k <

i∑
a=1

Ma,

and the M multiplicity vector describes the structure. By setting the mul-
tiplicities, the parameter dependencies can be neglected or considered
with arbitrary high complexity in the variables of controller-candidate,
Lyapunov-function candidate and slack variables as well.

The definite conditions on the structures of these variables e.g.,

A(p)X(p) + X(p)AT (p) ≺ 0

or the Bounded Real Lemma result in definite conditions on Polytopic TP
forms. They can be handled in general by defining a recursive method
to reformulate them into Linear Matrix Inequalities (LMIs) or Bilinear
Matrix Inequalities (BMIs), etc. according to the design method in con-
sideration.

Corresponding publication: [KJ-5].
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Summary

The theses essentially renew the tensor product model based control de-
sign methodology and the corresponding transformation. By allowing us-
ing special controller and Lyapunov-function candidates, that can depend
on some parameters with arbitrarily high multiplicity holding robustness
from the other ones, better solutions an be achieved. This way, the sepa-
rated parameter dependencies can be the central benefit of the methodol-
ogy.

Furthermore, the conservatism of the approach is decreased as the
parameter dependencies must be separated only to sets to be handled in
different ways during control design, respectively. This relaxation highly
generalizes the method since former TP model definition and the poly-
topic models without separation are its special cases. Furthermore, the
transformation method allows to obtain exact models even if complexity
reduction was applied.

Finally, to minimise the conservatism of polytopic description of pa-
rameter dependencies, the theses propose various methods to generate and
manipulate them according to the practical demands.
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