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1 Introduction

The idea of automatic error analysis of algorithms and/or arithmetic expressions is
as old as the scientific computing itself and originates from Wilkinson (see Higham
[39]), who also developed the theory of floating point error analysis [80], which is
the basic of today’s floating point arithmetic standards ([65], [62]). There are
various forms of automatic error analysis with usually partial solutions to the
problem (see, e.g. Higham [39],[21]). The most impressive approach is the interval
analysis, although its use is limited by the technique itself (see. e.g. [59], [60], [61],
[43], [44], [76], [39]). Most of the scientific algorithms however are implemented
in floating point arithmetic and the users are interested in the numerical stability
or robustness of these implementations. The theoretical investigations are usually
difficult, require special knowledge and they do not always result in conclusions
that are acceptable in practice (for the reasons of this, see, e.g. [79], [80], [11],
[39], [21]). The common approach is to make a thorough testing on selected test
problems and to draw conclusions upon the test results (see, e.g. [69], [70], [77]).
Clearly, these conclusions depend on the "lucky" selection of the test problems
and in any case require a huge amount of extra work. The idea of some kind of
automatization arised quite early.

The effective tool of linearizing the effects of roundoff errors has been widely
applied since the middle of the 70’s ([52], [53], [54], [55], [56], [57], [58], [73], [47],
[72]). Given a numerical method the computed value is a function R (d,d) (R :
R*™ — R¥), where d € R" is the input vector, and § is the vector of individual
relative rounding errors on the m arithmetic operations (6§ € R™, ||d]|_, < u, where
u is the machine rounding unit). Considering the first order Taylor expansion of
R at 0 =0 we have for all j =1,2,....k

S5 (0:0) + o1l (1)

R; (d,8) = R, (d,0) +§mj

From (1) an approximate error bound for the forward error immediately follows:

|R; (d,0) — Rj (d,0)| S o (d)u (1=1,2,...,k) (2)
where m
o(d) = mjaxz %?j (d, 0)' (3)

The need for computing the partial derivatives accurately and effectively motivated
the design of new automatic differentiation techniques. Since R is given as an al-
gorithm, it is decomposed to basic arithmetic operations and elmentary functions.
By automatic differentiation we apply systematically the chain rule of calculus ac-
cording to the relation "being an operand of" among the operations and elementary
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functions to compute the derivatives of the composition function R. In contrast
to numerical differentiation, automatic differentiation is free of truncation errors.
On the other hand it has the drawback, that we can not treat numerical methods
as black boxes, because we need the structural knowledge of their decomposition
to basic operations and elementary function. The data structure commonly used
to represent the structure of a numerical method is the computational graph.

Let us consider a simple example from [53]:

d x d,
d+ v,
dx v,
w+z,

y—v.

o 8 8 e
TT T T

with a single input d, and a single output z. The corresponding computational
graph is shown in Figure 1.

Concerning the computational graph related error analysis Chaitin-Chatelin
and Frayssé [11] gave the following summary.

"The stability analysis of an algorithm x = G (y) with the implementation
Gayg = IGY depends on the partial derivatives % computed at the various
nodes of the computational graph (see § 2.6). The partial derivatives show how
wmaccuracies in data and rounding errors at each step are propagated through the
computation. The analysis can be conducted in a forward (or bottom-up) mode or
a backward (or top-down) mode. There have been several efforts to automate this

derivation. One can cite the following:

1. Miller and Spooner (1978);

2. the B-analysis: Larson, Pasternak, and Wisniewski (1983), Larson and
Sameh (1980);

3. the functional stability analysis: Rowan (1990);

4. the automatic differentiation (AD) techniques:
Rall (1981), Griewank (1989), Iri (1991)"

Miller developed his approach in several papers ([49], [50], [51], [52], [53], [54],
[55], [56], [57], [58]). The basic idea of Miller’s method is the following. Given
a numerical algorithm to analyze, a number w (d) is associated with each set d
(d € R™) of input data. The function w : R™ — R measures rounding error, i.e.,
w (d) is large exactly when the algorithm applied to d produces results which are
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Figure 1: A computational graph.

excessively sensitive to rounding errors. A numerical maximizer is applied to search
for large values of w to provide information about the numerical properties of the
algorithm. Finding a large value of w can be interpreted as the given numerical
algorithm is suffering from a specific kind of instability.

The software performs backward error analysis. The value w (d) - u (where u is
the machine rounding unit) can be interpreted as the first order approximation of
the upper bound for the backward error. The computation of the error measuring
number is based on the partial derivatives of the output with respect to the input
and the individual rounding errors. An automatic differentiation algorithm is used
to provide the necessary derivatives.

The Miller algorithm was implemented in Fortran language (actually in FOR-~
TRAN IV) by Webb Miller and David Spooner [56], [57] in 1978. More information
on the use of the software by Miller and its theoretical background can be found
in [52], [53], [54] and [56]. The software is in the ACM TOMS library with serial
number 532 [57].

In the book of Miller and Wrathall [58], the potential of the software is clearly
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demonstrated through 14 case studies. The answers of the software are consistent
in these cases with the well known formal analytical and experimental results. The
program shows correctly the stability properties of algorithms such as the

e inversion of triangular matrices

e the linear least-squares problem by solving the normal equations
e Gaussian elimination without pivoting and with partial pivoting,
e the Gauss-Jordan elimination,

e the Gaussian elimination with iterative improvement,

e the Cholesky factorization,

e Cholesky factorization after rank-one modification,

e the classical and modified Gram-Schmidt methods,

e the application of normal equations and Householder reflections for linear
least squares problem,

e rational QR method, downdating of the QR factorization,
e the characteristic polynomial computation by the Faddeev method,

e symmetric matrix representations.

Miller’s approach was further developed for relative error analysis by Larson,
Pasternak, and Wisniewski [47]. Larson et al. [47] say (pp. 125-126) the following.

"To perform the error analysis, the algorithm being analyzed is represented as a
directed graph with each numeric quantity being a node in this graph. Directed arcs
lead from operands to their results. Fach node’s value is subject to error, called
local relative error. This error affects those subsequent nodes that are computed
using the contamined node as an operand. All of the local relative errors together
are used to produce a total relative error for each node. From the directed graph,
a system of equations relating to the local and total relative errors is generated.

Our software is related to that of Miller [4] and Miller and Spooner [5], which
analyzes the numerical stability of algorithms using absolute error analyses. In
particular, the input formats are similar, and the minicompiler, a program for
translating a FORTRAN-like language into the data format for the code [5], can
be used to specify the computational graph of the algorithm being analyzed."



Rowan [72] considers the numerical algorithms as black boxes. The two main
elements of his approach is a function that estimates a lower bound on the back-
ward error, and a new optimization method (called subplex and based on the
Nelder-Mead simplex method) that maximizes the function. A numerical method
is considered unstable if the maximization gives a large backward error. The FOR-
TRAN software requires two user-supplied Fortran subprograms; one implements
the algorithm to be tested in single precision, and the other provides a more ac-
curate solution, typically by executing the same algorithm in double precision.

Bliss [5], Bliss et al [6] developed Fortran preprocessor tools for implementing
the local relative error approach of Larson and Sameh. They also used some sta-
tistical techniques as well. The structure of their "instrumentation environment"
is shown in Figure 2 taken from Bliss et al [6].

| Cedar Fortran Preprocessor |

Numerical Quality
\\
\\

PERTURB

Interval analysis
Infinite precision arithm.
Qualitative stability

TOMS 594
(Larson)

Figure 2: The "instrumentation environment" of Bliss et al [6].

Error analysis tools based on the differential error model have been developed
not only for numerical but also for symbolic computing environments. Stoutemyer
[73] was the first to use computer algebra for error-analysis software. He used
the accumulated error expressions from the differential error model to determine a
bound on the error and proposes analyzing the condition expressions to find points
where instability is a problem. For other authors and approaches, see Mutrie et



al. [63], Kramer [43], [44], or [39].

Finally, we have to mention the PRECISE toolbox of Chaitin—Chatelin et al.
[11], [21] that embodies an entirely different strategy (somewhat similar to the
naive testing, but much more sophisticated). "PRECISE allows experimentation
about stability by a straightforward randomisation of selected data, then lets the
computer produce a sample of perturbed solutions and associated residuals or a
sample of perturbed spectra." ([11], p. 104).

Upon the basis of corresponding literature, the Miller approach seems to be
the most advanced although Miller’s method has several setbacks. The numerical
method to be analyzed must be expressed in a special, greatly simplified Fortran-
like language. We can construct for-loops and if-tests that are based on the values
of integer expressions. There is no way of conversion between real and integer
types, and no mixed expressions (that contains both integer and real values) are
allowed. Hence we can define only straight-line programs, i.e., where the flow of
control does not depend on the values of floating point variables. To analyze meth-
ods with iterative loops and with branches on floating point values, the possible
paths through any comparisons must be treated separately. This can be realized by
constrained optimization. We confine search for maximum to those input vectors
by which the required path of control is realized. The constraints can be specified
through a user-defined subroutine.

Higham [39] points out that the special language and its restrictions as the
greatest disadvantage of the software:

"...yet the software has apparently not been widely used. This is probably
largely due to the inability of the software to analyse algorithms expressed in For-
tran, or any other standard language".

Unfortunately, this can be said more or less on the other developments that
followed the Miller approach.

The aim of my research work is to improve Miller’s method to a level that meet
today’s requirements. I improved and upgraded Miller’s method in two main steps.
The first step was a F77 version usable in PC environment with standard F77 com-
pilers such as the GNU and Watcom compilers [24], [25], [26]. This version was
able to handle algorithms with a maximum of 3000 inputs, and a maximum of 1000
outputs, and operations of a maximum of 50000 while the original Miller program
was able to handle a maximum of 30 inputs, 20 outputs and 300 operations [24],
[25], [26]. However even this new version used the simplified Fortran like language
of Miller which is considered as a major problem by Higham and others. Using
the recently available techniques such as automatic differentiation, object oriented
programming and the widespread use of MATLAB, I have eliminated the above
mentioned drawbacks of Miller’s method by creating a Matlab interface. Applying



the operator overloading based implementation technique of automatic differen-
tiation Griewank [37] and Bischof etal [4] we have provided means of analyzing
numerical methods given in the form of Matlab m-functions. In our framework,
we can define both straight-line programs and methods with iterative loops and
arbitrary branches. Since the possible control paths are handled automatically,
iterative methods and methods with pivoting techniques can also be analyzed in
a convenient way. Miller originally used the direct search method of Rosenbrock
for finding numerical instability. To improve the efficiency of maximizing, we
added two more direct search methods [30], [28], [29], [35]: the well known simplex
method of Nelder and Mead, and the so called multidirectional search method
developed by Torczon [75].

In the thesis we present a significantly improved and partially reconstructed
Miller method by designing and developing a new Matlab package for automatic
roundoff error analysis. Our software provides all the functionalities of the work
by Miller and extends its applicability to such numerical algorithms that were
complicated or even impossible to analyze with Miller’s method before. Since the
analyzed numerical algorithm can be given in the form of a Matlab m-file, our
software is easy to use.

We used the software package to examine the stability of some ABS methods [1],
[2], namely the implicit LU methods and several variants of the Huang method
[25]. The obtained computational results agreed with the already known facts
about the numerical stability of the ABS algorithms. The program has shown
that implicit LU is numerically unstable and that the modified Huang method has
better stability properties than the original Huang method and the famous MGS
(modified Gram-Schmidt) method (see [58], [2] or [36]).

We also tested three fast matrix multiplication algorithms with the following
results:

1. The classical Winograd scalar product based matrix multiplication algorithm
of O (n?) operation cost is highly unstable in accordance with the common
belief, that has never been published.

2. Both the Strassen and Winograd recursive matrix multiplication algorithms
of O (n*3') operation costs are numerically unstable.

3. The comparative testing indicates that the numerical stability of Strassen’s
algorithm is somewhat better than those of Winograd.

Upon the basis of our testing, we may think that the new software called Miller
Analyzer for Matlab will be useful for numerical people or algorithm developers to
analyze the effects of rounding errors. The results of my research were published

in the works [24], [25], [26], [27, [30], [28], [29], [31], [32], [33], [34], [35)].



2 The original Miller-Spooner software and its
limitations

Using the software, the numerical method to analyse must be expressed in a special
and simplified Fortran-like language. The language allows the usage of integer and
real types. The variables can be scalars, or one or two dimensional arrays of both
types. We can construct for-loops and if tests, but only that are not based on the
values of real variables. This means, that we can only define algorithms, in which
the flow of control does not depend on the value of floating point variables. To
analyse methods that contain branching based on the value of real variables the
possible pathes through comparisions have to be treated separately. This can be re-
alized by constrained optimization. We constrain the search for maximum to such
input vectors, by which the required path of control is realized. The constraints
can be specified through a user-defined Fortran subroutine, called POSITV.

The software package consists of three programs, a minicompiler and two error
analyser programs. The minicompiler takes as data the numerical method to
analyse, written in a special programming language, and produces as output a
translation of that program into a series of assignment statements. The output is
presented in a readable form for the user, and in a coded form for use as input to
the error analyser programs. One of the error analyser programs (i) is for deciding
numerical stability of a single algorithm, and the other (ii) is for comparing two
algorithms. The input for the error-testing programs is arranged as follows: (1)
the output of the minicompiler (For program (i), it is the compiled version of the
algorithm to analyse. In the case of program (ii) we must provide the compiled
version of the two algorithms to compare), (2) a list of initial data for the numerical
maximizer, (3) the code of the chosen error-measuring value, (4) target value for the
maximizer. The programs return with the final set of data found by the maximizer
routine and with the value of the chosen error-measuring number at this set of data.
If program (i) diagnoses instability (the value of the error-measuring number at
the final set of data exceeds the target value) then the condition number is also
computed at the final set of data.

The minicompiler does its job in two phases: the compilation phase and the
interpreter-like execution phase. In the compilation phase the program makes
syntactical and semantical analysis, and generates an intermediate code (a coded
representation of the algorithm to analyse) for the interpreter routine. The inter-
preter executes this intermediate code in a special way. All integer expressions are
actually evaluated in order to perform the correct number of iterations of for-loops,
and to interpretively perform if-then tests. In contrast no actual real arithmetic
computation is done. The interpreter does not evaluate the floating point opera-
tions, only registers them in the form of assignment statements. Throughout all



real variables are treated symbolically as being the n-th input value, intermediate
value, or real constant. The restrictions of the language ensures, that the pro-
duced series of assignment statements, which is actually a representation of the
algorithms computational graph, is independent from the input data. Based on the
computational graph generated by the minicompiler, the error analyser programs
compute the partial derivatives of the output of the analyzed numerical method
with respect to the inputs and individual rounding errors in every data required by
the maximizer routine. The differentiation is realized through graph algorithms,
so the applied method is not numerical derivation. The computation of stability
measuring function is based on these partial derivatives. The direct search method
used for maximizing is the Rosenbrock method.

The Miller-Spooner roundoff error analyser software was written in Fortran
IV for the IBM 360/370 series, and its final version were issued in 1979, which
can be downloaded from the NETLIB repository. Without any modifications, it
can not be used in a PC environment with the most widely used compilers based
on the Fortran 77 standard (GNU compiler, Watcom, Lahey, etc.), because there
are several non-standard solutions in the source. By compilation we get several
error messages, but even if we are able to correctly eliminate these errors we get a
program, which simply does not work. The semantical problems are arising from
two facts. First, the software uses EBCDIC character encoding instead of ASCII.
Second, the correct working of the program requires, that some local variables be
static i.e., they have to keep their values between two function or procedure calls.
Unlike in older Fortran dialects this is not guaranteed by the Fortran 77 standard.

In addition, the original version bounds the user to extraordinary strict limita-
tions in the size of the algorithm to analyse. The number of inputs cannot exceed
30, the number of outputs must be smaller than 20, and the total number of inputs
and real arithmetic operations may not exceed 300. The limits are due to small
values of constants determining the sizes of static arrays used in the software.
Another weak point of the sofware is maximizing, because it can be done only
by direct search, as the function w is not differentiable. Direct search methods
are heuristic, so sometimes the program can provide misleading results. Failure of
the maximizer to find large values of w does not guarentee that none exists. The
method tends to be optimistic: unstable methods may appear to be stable.

Finally, we have to note that the software is rather inconvenient to use. The
input stream for the error analyser programs must be made out by hand. If we
want to perform constrained optimization through the POSITV routine, we have to
relink the program, and the method of analysing algorithms containing branching
based on the values of real variables by constrained optimization can be rather
complicated in some cases.

The original Miller program can handle a maximum of 30 inputs, 20 outputs
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and 300 operations. My F77 variant of Miller’s algorithm can handle algorithms
with a maximum of 3000 inputs, 1000 outputs, and 50000 arithmetic operations
[25].

3 Straight-line programs, computational graphs
and automatic differentiation

Miller’s error analyzer treats rounding errors in a machine independent manner.
The analysis is not tuned to a particular form of machine number or a particular
numerical precision, instead it employs a model of floating point numbers and
rounding errors. We use the standard model of the floating point arithmetic,
which assumes that the relative error of each arithmetic operation is bounded by
the machine rounding unit, and we ignore the possibility of overflow and underflow.
The IEEE 754/1985 standard of floating point arithmetic guarantees that the
standard model holds for addition, subtraction, multiplication, division and square
root (see, e.g. Muller et al. [62]). Unfortunately it is not true for the exponential,
trigonometric, hyperbolic functions and their inverses. Hence we limit ourselves to
numerical algorithms that can be decomposed to the above mentioned five basic
operations and unary minus, which is considered error-free.

The roundoff error analyzer method of Miller is based on the first order deriv-
atives of the output with respect to the input and the belonging rounding errors.
Our main improvement concerns the automatic differentiation method computing
the values for the Jacobian. In order to describe the applied techniques precisely,
we need to make clear the concepts of a straight-line program and a computational
graph and their role in the applied automatic differentiation method.

First, we introduce the notion of a straight-line program. Informally, a numer-
ical algorithm is a straight-line program if it does not contain branches depending
directly or indirectly on the particular input values, and the loops are traversed a
fixed number of times. With the loops unrolled, taking the appropriate branches
at if-tests and inlining the subroutines — i.e., inserting the content of a subrou-
tine in the place of its call —, one could create an equivalent program containing
only sequence of real assignment statements to every straight-line program. By
defining straight-line programs and computational graphs, we follow Castano et
al. [10] with slight modifications.

Now we give the formal definition of a straight-line program II. Let m, n and

t be natural numbers and introduce X = {z1,29,...,2,}, V = {v1,09,..., 0}
and {«,+, —, X, =, sqrt} disjoint sets of n, m and six symbols, respectively, and
let S = {s1,59,...,5} be a set of ¢t real numbers. We shall call the elements of

S constants, the elements of X inputs and the elements of V' intermediate results
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of the straight-line program II. A computational sequence C' is an m-tuple with
elements of the form vy « v} oy v} or vy « sqrtv or vy «— —v} (1 < XA < m,
oy € {+,—, X, +}), where v} and v} are either elements of V' with lower index than
A, or arbitrary elements of the set SUX. A straight-line program of length m with
n inputs, ¢ constants and k outputs is an ordered quintuple IT = (S, X, V, T, C),
where S C R, and X, V are disjoint sets of symbols as above with £, n, m elements,
respectively. T is a subset of V with cardinality &, and C' is a computational
sequence of length m. The elements of T" are the outputs of the straight-line
program II.

An interpretation of the straight-line program II in the domain R of real num-
bers is a mapping J : X — R. If J can be extended to a mapping SUX UV — R
(for convenience also denoted by J) in such a way that J (s) = s for every s € 5,
and for every 1 < A\ < m the identity

J(V)) ox J (V)) if ey = vy «— v oy VY
J(vy\) = J (vh) if ¢\ = vy « sqrt v} (4)
—J (v}) if ¢y = vy «— —v)

defined and holds, then we call the interpretation consistent (c, denotes the entry
of C' with index \). It is obvious that there exists at most one consistent way to
extend a given mapping J, and such an extension exists unless we encounter values
for which any of the prescribed operations are undefined (attempting to division by
zero or taking the square root of a negative number). A consistent interpretation

on R gives rise to a finite sequence of real numbers: J (z1), J (x2),...,J (x,),
J(v1), J(v9),...,J (vy). The numbers d; = J (x;) are the actual input values,
and w; = J(v;) are called intermediate values. If 7' = {v;,,v,,,...,v;,}, then
the interpretation results k outputs p1 = wj,, po = wj,, ..., pr = wj,. We also
say that the interpretation computes the outputs pi,ps,...,pr from the inputs
dy,ds, ... d,.

Let IT = (S, X, V, T, C) be a straight line program. We associate to II a labeled
directed acyclic graph G (II) whose set of nodes is S U X U V. The elements
of S U X represent nodes that are not the starting point of any edges, and the
corresponding elements of S U X will also be the label of these nodes. The nodes
labeled by elements of S are called constant nodes whereas the nodes labeled by
elements of X are called input nodes. The elements of the set V' are the arithmetic
nodes of G. If vy < v o) vf is an element of the computational sequence C, then
G contains two edges from the node vy to v} and vY, and the node v, is labeled
by o). Analogously, if ¢ is of the form of v « sqrt v} or vy « —v} an edge goes
from vy to v}, and v, is labeled by sqrt and —, respectively. Finally we add k
additional nodes (output nodes) labeled by the elements of T'. GG contains an edge
from each output node to the arithmetic node giving the value of that output. We
call G (IT) the computational graph associated to the straight-line program II.
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A given computational graph may be associated to different straight-line pro-
grams, which however compute all the same outputs. Hence from now on, we
consider the straight-line program and its computational graph equivalent.

We define the program function of the straight-line program on domain R as
follows. Let D be the set of all vectors d € R™ for which the corresponding
interpretation J (x;) = d;, (i = 1,2,...,n) is consistent. For every d € D the
consistent interpretation computes the output vector p € R¥ resulting a function
P : D — R*. This mapping will be called the program function of the straight-line
program on domain R.

Let IT = (S, X, V,T,C) be a straight-line program as above, and let § € R™
be the vector of rounding errors hitting each operation in C. The standard model
of floating point arithmetic guarantees that |§,;| < u for all j = 1,2,...,m, where
u is small positive number, the machine rounding unit. An interpretation of the
straight-line program II on the domain R in the presence of error vector 4 is a
mapping J : X — R. If J can be extended to a mapping J : SUX UV — R in
such a way that J (s) = s for every s € S, and for every 1 < A < m the identity

(T3 o @) - (1482 if er =y = v§ 0204
J(vr) = \/ j(vg\) (144y) if ¢\ = vy « sqrt v} (5)

—J (v}) if ¢y = vy «— —v}

defined and holds, then we call the interpretation consistent.

Let D be the set of all pairs (d,d) of vectors d € R", § € R™ for which
the corresponding interpretation J (x;) = d; (i = 1,2,...,n) is consistent in the
presence of rounding errors 0. For every (d,d) € D the consistent interpretation
computes the output vector p € R* resulting a function R : D — R¥, the program
function of the straight-line program on domain R with presence of rounding errors.
It is obvious that for all d € D, (d,0) € D also holds, and P (d) = R (d,0).

The analysis of the effects of rounding errors on the evaluation of P at dy € D
in floating point arithmetic according to the computational sequence C' is based on
the derivatives of R at (do,0) € D with respect to the entries of d and 6. According
to the straight-line program representation and equation (5), the function R is
decomposed into the composition of ¢, (1 < A < m) elementary functions. For all
1 <A <m g, has the form:

o (@ 1e) = (@ory)(1+e) ifer=uy o v)or
0, (z,€) = Vz(1+¢) if ¢\ = vy « sqrt v
o, () = -z if ) = vy «— —v}

where z,y,2,e € R, z > 0, |¢] < u. The required derivatives of R are evaluated
by automatic (sometimes also called algorithmic) differentiation techniques, i.e.,
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knowing the elementary functions and their derivatives, we apply systematically
the chain rule of calculus according to the dependence relation given by the compu-
tational graph to build the derivatives of the composition function R. The applied
automatic differentiation algorithm requires the differentiability of the elementary
functions. Thus we have to restrict the domains of the functions P and R to ensure
that no square root of zero will be encountered in (4) and (5) (except the case of v}
being a constant, which is not a practical implementation of P). Let J : X — R be
a consistent interpretation of the straight-line program II in the domain R. We call
the interpretation differentiable if for every entry of the computational sequence of
C with the form vy « sqrt v the corresponding identity J (vy) = +/J (v}) holds
with J (v}) > 0.

4 Numerical stability measures

The numerical stability measures used in Miller’s algorithm were developed by
Miller in a sequence of papers [49], [51], [54], [56] and [58]. The purpose of this
chapter is to give an understanding of how the software measures the effects of
rounding errors, and how the error measuring function is formulated. Actually
we can perform analysis based on several error measuring numbers (various ways
of assigning w), and beside analysing the propagation of rounding errors in a
single algorithm we can also compare the numerical stability of two competiting
numerical methods, which neglecting rounding errors compute the same values.
The method treats rounding errors in a machine independent manner. The analysis
is not tuned to a particular form of machine number or a particular numerical
precision, instead it employs a model of rounding errors. The applied model is the
standard model of the floating point arithmetic, which assumes that the relative
error of each arithmetic operation is bounded by the machine rounding unit, and we
ignore the possibility of overflow and underflow. The allowed arithmetic operations
are addition, substraction, multiplication, division, square root and unary minus,
but unary minus is always considered to be error free.

First let us consider the case of analysing a single algorithm. The software pro-
vides four stability-measuring numbers, JWg (d), JWi (d), WKg (d), WK, (d),
which measure the minimum problem perturbation equivalent to rounding er-
ror in a given program at data d. Other numbers ERg (d) and ERy (d) use
weaker comparison of computed and exact solutions. To give the precise defin-
ition of these error measuring functions we shall need some notations. Suppose
that S C R", 7" C S and f : S — R™. Notation f(7T") will denote the set:
f(T) = {f(t) e R™:teT}. We extend some operations on vectors to sets of
vectors: let 5,571,595, C R", v € R" be a vector, & € R a scalar and A € R™*" an
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m by n matrix, then the sets aS, AS, v+ S, S; + Sy will be defined as:

aS = {ar:ze S}
AS = {Az:x € S}
v+S = {v+z:x2€S}
S14+S = {x+y:xeS,yeS}.

Suppose R is a numerical algorithm applying only the allowed arithmetic opera-
tions mentioned above. If the operations are performed in floating point arithmetic,
with the assumption of the standard model, then the computed value is a function
R(d,6) (R:R™™ — R¥) where d € R" is the input vector, and § is the vector
of individual relative rounding errors on the m arithmetic operations (6 € R™,
161, < u, Where u is the machine rounding unit). Let f = R(d,0) be the exact
solution. K™ = {z € R" : ||z, < 1} will denote the maximum norm unit
ball. For all d € S Dg(d) = diag(d) will be a diagonal matrix with d; as its i-th
diagonal entry, and Dy (d) = diag(]|d||,,) will stand for a diagonal matrix with the
largest entry of the input vector as all of its diagonal elements. We similarly define
diagonal matrices for the exact result: Fg = diag(f(d)), and Fj, = diag(||f(d)||..)-
Using these notations we can define the stability measuring numbers as follows:

JWe(d) = inf {a>0: R(d,uK™) C f(d+auDpK™)}

JWi(d) = inf{a>0:R(d,uK™)C f(d+auD, K™)}

WEKp(d) = inf {a>0:R(d,uK"™) C f(d+ auDpK™) + auFpukK®}

WEK(d) = inf{a>0:R(d,uK™)C f(d+aDuK™) + auf  K®'}

ERg(d) = inf{a>0:|R(d,uK"™) - f(d)|_ C|f(d+ouDpK™) - f(d)|_}
ERp(d) = inf{a>0:||R(d,uK"™)— f(d)|| . €| f(d+auD, K™)— f(d)|_}-

In the definitions R(d, uk (m)) is the set of possible computed values under the
assumption of the standard model of floating point arithmetic. On the right-hand
side of the subset sign in the definitions we have compact sets, which implies
that the infimums are achieved. So we can say that for any 6 € R™, ||4]|, < u,
there exists a vector m € R”, |m;| < JWg(d) - |d;| -u (i = 1,2,...,n) for which
R (d,0) = f(d+ m) holds, and JWp (d) is the smallest such number. This means
that JWg (d)-u is the least upper bound for the componentwise relative backward
error. Analogous fact holds for JW;, (d) with the relation |7;| < JW (d) - ||d||, - v
(1 =1,2,...,n) for the vector 7, so JW}, (d) - u is the least upper bound for the
normwise relative backword error. In the case of the W K x measures (X = FE, or
L) we also allow perturbations in the output space. For any § € R™, 0], < u,
there exist a vector 7 € R™, |m;| < WKg (d) - |d;| -u (i =1,2,...,n) and a vector
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0 € R* || K WKEg (d)-|fi(d)|-u (i =1,2,...,k) for which R (d,8) = f (d+ 7)+¢
holds and W K (d) is the least such number. So W Kg (d) - u can be interpreted
as the least upper bound for the relative mixed forward-backward error measured
componentwise. As the same is true for WK, (d) with |m;| < WK (d) - ||d||, - u
(i=1,2,...,n)and |¢;| < WKL (d) || f(d)|, v (@i=1,2,...,k), WK (d) is the
least upper bound for the normwise relative mixed forward-backward error. Notice
that the relations WK, (d) < WKg(d) < JWg(d) and WK, (d) < JW (d) <
JWE (d) will hold.

The numbers JWx and W K x require that the computed solution be obtained
at (or close to) exact solution. FERx measures how much the data must be
perturbed to create an error as large as that in the computed solution. In the
case of ERy it is true, that for any § € R™, |||, < u, there exists a vector
me R |m| < ERg(d)-|d;|-u (i =1,2,...,n) for which [|R(d,d) — f(d)|,, =
| f(d+m)— f(d)|,, holds, and ERp (d) is the least such number. The same is
true for ERy, (d) with the relation |m;| < ERy (d)-||d| - v (¢ =1,2,...,n) for the
vector 7. The inequalities ERy, (d) < ERg (d) and ERx (d) < JWx (d) (X = E,
or L) are obvious.

Now let us take a glance at the error-measuring numbers used to compare
the stability properties of two algorithms. Let () and R be two algorithms for
evaluating the function f, and the computed values at data d, with rounding
errors v € R' and § € R™ be denoted by Q(d,~) and R (d,§). The error measuring
functions are defined as:

JWryq = inf {a>0:R(d, uK<m>) C Q(d cuK®))
ERpjq = inf{a>0:||R(duk™) - f(d)||_ C||Qd,auk®) - f(d)]|_}.

We can say, that for any § € R™, ||c5||C>o < u, there exists a vector v € R/,
17| < JWgig(d) -u (i = 1,2,...,n) for which R(d,d) = Q(d,~) holds, and
JWg/q (d) is the smallest such number. Regarding the standard model of machine
arithmetic the computed values given by R can be achived with rounding errors in
@ bounded by JWg/q (d) - u. In the case of ERp/q it is true, that for any 6 € R™,
16]], < u, there exists a vector v € RY, |y,] < ERpjo(d)-u (i = 1,2,....n)
for which ||R(d,0) — f (d)||, = ||Q (d,7) — f (d)| ., holds, and ERp/q (d) is the
smallest such number. ERpg/qp - u can be interpreted as the least upper bound
for the relative roundoff errors in @), by which ) produces output with as large
forward error as does R in floating point arithmetlc Wlth machine rounding unit

u. The inequalities ERq/p (d) < JWg/r (d) and < JWor(d) (X = E, or

L) will also hold.

The software gives first order approximation of the above error measuring num-
bers based on the partial derivatives of R with respect to the input vector d and
the individual rounding errors ¢, or in the case of comparing two algorithms the

JWR
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derivatives of () and R with respect to rounding errors. The desired derivatives
are obtained by automatic differentiation on the computational graph of the given
numerical algorithm(s).

5 The optimization algorithms

In order to achieve global error bounds Miller’s algorithm applies a numerical
maximizer routine. Since in general the error measuring functions are not differ-
entiable, a direct search method, the method of Rosenbrock [71] is used. Naturally,
it is not guaranteed that global maximum is reached, since the maximizer routine
may terminate in a local extremum, or it is also possible that it fails to converge
at all. So sometimes we may get misleading results: unstable methods may ap-
pear to be stable. On the other hand the various error measuring numbers have
the adventage, that the relations holding among them usually prevents the user
to accept missleading results. Since the publication of Rosenbrock’s method, the
derivative-free optimization has also developed a lot (see, e.g. [64], [75], [45], [9],
[48], [42], [13], [23]). In order to improve the performance of the program I selected,
programmed and tested two extra methods. These are the famous Nelder-Mead
simplex method ([64], [45], [9], [48], [42], [13], [23]) and Torczon’s multidirectional
search ([75], [48], [42], [13]). The two selected algorithms are the following:

The Nelder-Mead method

Initialization: Choose an initial simplex of vertices Yo = {9, v¢, ..., y0}-
Evaluate f at the points in Y. Choose constants:

D<y’<l1l, —-1<6°<0<d®<d <6

For £ =0,1,2,...
1. Order: Order the n + 1 vertices of Y = {3°,¢%,...,y"} so that

P=f)<fl=rly) < <fr=ry").

2. Reflect: Reflect the worst vertex y™ over the centroid y¢ = Z?:_Ol y'/n
of the remaining n vertices:

yT’:yC_"_éT‘(yC_yn).

Evaluate f7 = f(y"). If f© < f7 < f~1, then replace y™ by the reflected
point y" and terminate the iteration: Y, = {¢°, 3!, ...,y" 1,y }.
3. Expand: If f7 < f°, then calculate the expansion point

Y=y + 0y —y")
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and evaluate f¢ = f(y°). If f¢ < f7, replace y" by the expansion point
y© and terminate the iteration: Y, = {¢°,y',...,y" !, y¢}. Otherwise,
replace y™ by the reflected point " and terminate the iteration:

Yk—i—l = {yov ?/17 ) yn—17 yr}

4. Contract: If f~ > f*~! then a contraction is performed between the
best of " and y".
(a) Outside contraction: If f7 < f" perform an outside contraction

yOC — yC + 5OC(yC _ yn)

and evaluate f°° = f(y°). If f°° < f" , then replace y™ by the
outside contraction point y7¢ and terminate the iteration:

Yk:-l—l - {907 ?Jl, ceey yn—l’ yoc}‘

Otherwise, perform a shrink.
(b) Inside contraction: If f” > f", perform an inside contraction

yic — ,yc + 5ic(yc _ yn)

and evaluate f° = f(y'). If f' < f™, then replace y™ by the inside
contraction point 3 and terminate the iteration:

Y;c—f—l = {907 ?le sy yn—l’ yzc}

Otherwise, perform a shrink.
5. Shrink: Evaluate f at the n points y° + v*(y* —°), i =1,...,n,
and replace 3!, ...,y" by these points, terminating the iteration:
Vi ={y* +7°(y' —4°),i =0,...,n}.
The MDS method
Initialization: Choose an initial simplex of vertices Yo = {93, v¢, ..., y0}-
Evaluate f at the points in Y. Choose constants:

0<y <1<~

For £k =0,1,2,...
0. Set Y =Y.
1. Find best vertex: Order the n + 1 vertices of Y = {¢y°, y', ..., 4"} so
that f© = f(y°) < f(y"),i=1,...,n.
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2. Rotate: Rotate the simplex around the best vertex y°:

yr = T (yi — yo), i1=1,...,n.

Evaluate f(y!), i =1,...,n, and set f" =min{f(y}) :i=1,...,n}. If
fm < f° then attempt an expansion (and then take the best of the
rotated or expanded simplices). Otherwise, contract the simplex.

3. Expand: Expand the rotated simplex:

=y =W -y, i=1..n

Evaluate f(yf), i =1,....,n, and set f¢ =min{f(y{):i=1,...,n}.
If f¢ < f", then accept the expanded simplex and terminate the
iteration: Y1 = {y°, 95, ...,y }. Otherwise, accept the rotated simplex
and terminate the iteration: Y1 = {3° vi, ...,y  }.

4. Shrink: Evaluate f at the n points 3° + v*(y* —¢°), i = 1,...,n, and
replace 3, ...,y" by these points, terminating the iteration:

Yk+1 = {yO + 78(3/@ - yo)ai = 07 7n}

Details on the convergence and implementation may be found in the literature
[71], [64], [75], [45], [9], [48], [42], [13], [23].

5.1 Comparative testing of the applied direct search meth-
ods

In the following, I give some test results about the use of the applied direct search
methods. The tests concern three algorithms, also discussed by Miller in his case
studies [58]: inversion of triangular matrices using back substitution, Gaussian
elimination without pivoting and Gauss-Jordan elimination with partial pivoting.
We consider such error functions in each test case that are known to be unbounded
(see Miller [58]), and we investigate the number of function evaluations required by
the direct search methods to reach the target value of 10000. The size parameter
for the matrix to invert and the system of equitions to solve by the Gauss and
Gauss-Jordan elimination methods will be set to n = 4, n = 8 and n = 16 in each
case.
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5.1.1 Triangular matrix inversion

Table 1 shows the results for the analysis of inverting triangular matrices using
back substitution. We started the maximizer routines from the diagonal matrix

1

n

In this case, the Multidirectional search method was the only method that could

n | Rosenbrock | Nelder-Mead | Multidirectional
4 — — 232
8 — — 184
16 — — 680

Table 1: Number of function evaluations required to maximize the normwise back-
ward error for triangular matrix inversion.

find a value greater than 10000 for the normwise backward error (JWp).

5.1.2 (Gaussian elimination

The results for Gaussian elimination are shown in Table 2. The error function to
maximize was the normwise mixed forward-backward error (WK ). The maxi-
mization was started from the system:

311 --- 1 n+2
141 .- 1 n+3

A=|11 5 --- 1 ’ b= | n+4 |. (6)
_1 11 --- n+2_ _2n+1_

Table 3 shows the results of a test that was the same as the previous except
we constrained the maximization to symmetric matrices. The search was started

fom (6).
5.1.3 Gauss-Jordan elimination with partial pivoting

Finally, I have tested the search methods on the normwise backward error (JWp)
for Gauss-Jordan elimination with partial pivoting. The results are shown in Table
4. The Nelder-Mead simplex method failed for all sizes.
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n | Rosenbrock | Nelder-Mead | Multidirectional
4 209 — 555
8 692 461 1397
16 1139 2508 9828

Table 2: Number of function evaluations required to maximize the normwise mixed
forward-backward error for Gaussian elimination.

n | Rosenbrock | Nelder-Mead | Multidirectional
4 — 162 324
8 226 — 1631
16 1843 759 3195

Table 3: Number of function evaluations required to maximize the normwise mixed
forward-backward error for Gaussian elimination. The search was constrained to
symmetric matrices.

From the above examples one could deduce that the less robust method is the
Nelder-Mead simplex method. As the multidirectional search method found the
target value in all cases it is our strongest method, but it requires much more
function evaluations and so computational time, than the other two methods. A
good practice could be if we start an analysis using the Rosenbrock method, and
if it fails we can exploit multidirectional search.

6 The new operator overloading based approach
of differentiation

Now, we briefly discuss the technique of automatic differentiation that we have
applied in our software. To fully understand this section, the reader should be
familiar with the object oriented concept of operator overloading and the way
it can be used to implement automatic differentiation tools. For the required
information please consult Rall [67] or Griewank [37].

The original software by Miller has its own programming language. The ana-
lyzed numerical algorithm must be expressed in that simplified, Fortran-like lan-
guage. The restrictions of the language guarantee that the defined program can
be converted to an equivalent formal straight-line program. A software module
called the minicompiler compiles the given algorithm into a straight-line program
as the first step of analysis.

The problem is that programs containing iterative loops that may be traversed
variable number of times and branches that modify calculation according to various
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n | Rosenbrock | Nelder-Mead | Multidirectional
4 — — 1248
8 475 — 8052
16 5822 — 17958

Table 4: Number of function evaluations required to maximize the normwise back-
ward error for Gauss-Jordan elimination.

criteria cannot be handled by the Miller’s minicompiler. On the other hand the
straight-line program and the computational graph is still an accurate model of
such a program as it is executed upon a given fixed d input vector. Loops can
be unrolled, and only certain branches of the program are actually taken in each
given case. By executing any numerical program, we can record the arithmetic
operations occurred in the form of a computational sequence as an execution trace
of all the operations and their arguments. With the nomination of the input and
output variables, we get a straight-line program, for which the derivatives can be
calculated in the same way as by Miller’s original approach. Of course, for different
input data we may get different straight-line programs by tracing the execution.

Let d € R™ be a vector of input data upon which a given numerical algorithm
can be executed without any arithmetic exceptions and run-time errors. Tracing
the execution we get a straight-line program I1; = (S, X, Vy, Ty, Cy) with program
functions P, in exact arithmetic and R, in the presence of rounding error. Under
our assumptions the interpretation J (x;) = d;, (i = 1,2,...n) will be consistent,
and if it is also differentiable, then we can calculate the Jacobian of function R,
at (d,0) € R"™d,

The basic idea of operator overloading approach of automatic differentiation is
that we use a special user defined class instead of the built-in floating point type,
for which all the arithmetic operators and the square root function are defined
(overloaded). Upon performing the operations on the variables of that special type,
in addition to computing the floating point result of the operation, the appropriate
entry (node) is also added to the computational sequence (graph). Such a class
must contain at least two fields (data members): the actual floating point value as
in the case of ordinary variables and an identifier that identifies the entry (node)
in the computational sequence (graph) corresponding to the given floating point
value.

We have developed a Matlab interface for automatic differentiation, which over-
loads the arithmetic operators and the function sqrt for Matlab vectors and ma-
trices of class real (complex arithmetic is not supported). By executing the m-file
code of the analyzed numerical algorithm using our special class instead of class
real, we get the required computational sequence as a trace of execution. Our
approach is much the same as the overloaded automatic differentiation libraries
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ADMAT (developed by Coleman and Verma [12], Verma [78] and MAD (by Shaun
A. Forth [22]). The main difference is that unlike these toolboxes we also calcu-
late the partial derivatives with respect to the rounding errors in addition to the
derivatives with respect to the inputs.

7 The Miller Analyzer for Matlab

Miller Analyzer for Matlab is a mixed-language software. We kept several routines
from the work of Miller et al. [57], which was written in Fortran.

These routines perform automatic differentiation using graph techniques on the
computational graph, compute error measuring numbers from the derivatives and
do the maximization of the error function. The interface between Matlab and the
Fortran routines is implemented in C++. The source has to be compiled into a
Matlab MEX file, and it is to be called from the command prompt of Matlab. The
integration into the Matlab environment makes the use of the program convenient.
Matlab provides an easy way of interchanging vectors and matrices with the error
analyzer software, and we can immediately verify the results either by testing
the analyzed numerical method or by applying some kind of a posteriori roundoff
analysis upon the final set of data returned by the maximizer.

Applying the operator overloading technology of Matlab (version 5.0 and above,
for details see Register [68]), we have provided a much more flexible way of defining
the numerical method to analyze, than the minicompiler did. This new way is
based on a user-defined Matlab class called cfloating, on which we have defined
all the arithmetic operators and the function sqrt. The functions defining these
operators compute the given arithmetic operations and create an execution trace
of the operations as a computational sequence. To analyze a numerical method,
we can implement it in the form of Matlab m-file using cfloating type instead of
the built-in floating point type. However, the cfloating class can do more then
the original compiler (the minicompiler of Miller) since it does not only register the
floating point operations, but also computes their results. During execution the
value of real variables are available, which through the overloading of relational
operators makes it possible to define numerical methods containing branches based
on values of real variables and iterative loops (i.e., algorithms that are not straight-
line).

Still, this is not yet enough to analyze the numerical stability of such algo-
rithms, because unlike the minicompiler the generated computational graph may
depend on the input data. Algorithm 1 gives the high level pseudocode of the
original program of Miller. Statements (1) and (2) are performed by the mini-
compiler. As the analyzed method is guaranteed to be straight-line, the generated
computational graph is independent from the floating point input vector. The
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Algorithm 1 The original algorithm

1. Compilation

2:  Generating the computational graph

3: repeat

4: for data d required by the maximizer
5: Computing partial derivatives

6 Evaluating of w (d)

7:  until (stopping criterion of the maximizer)

Algorithm 2 The new approach

1:  repeat

2 for data d required by the maximizer
3 Generating the computational graph
4: Computing partial derivatives

5 Evaluating of w (d)

6: until (stopping criterion of the maximizer)

loop given in statements (3)-(7) is executed by the error analyzer program. The
program computes the partial derivatives and the stability measuring number for
every d input set of data required by the maximizer. The program terminates if the
stopping criterion of the numerical maximizer is fulfilled. Algorithm 2 illustrates
our new approach. In this case the compilation phase is omitted since the Matlab
interpreter executes the m-file directly. The problem is that the generated com-
putational graph is not necessarily independent from the input data. Therefore,
the process that builds the computational graph had to be inserted into the main
loop (Algorithm 2, statement (3)). In this way our program is able to analyze the
numerical stability of algorithms that are not straight-line.

7.1 Defining the numerical method to analyse by m-file
programming

The numerical method to analyse must be implemented in a special way in the form
of m-functions. The numerical algorithm can be given either as a single m-function,
or it can be organized into a main m-function and one or more subfunctions. The
purpose of these m-files is to build the computational graph corresponding to the
floating point operations performed when the numerical algorithm is executed upon
a given input data. Instead of the built-in double precision MATLAB array, we use
a special class called cfloating, for which the arithmetic operators and the function
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sqrt for square root are defined (overloaded). When the error analyser calls the
main m-function, the MATLAB interpreter executes it. Upon performing the
operations on the variables of type cfloating, beside computing the floating point
result of the operation, the appropriate node is also added to the computational
graph. The cfloating class contains two fields (data members): the actual floating
point value, as in the case of ordinary variables, and a node identifier, which
identifies the node in the graph corresponding to the given floating point value.

As every MATLAB variable, cfloating is also an array, and every element of
the array contain the two fields: value and node identifier. It can be a matrix
(two dimensional array) or a multidimensional array (array with more than two
dimension). Scalars (1-by-1 array) and vectors (1-by-n or n-by-1 array) are spe-
cial matrices in MATLAB. The MATLAB operators: +, —,*, /,.x,./,.\ and the
function sqrt can be applied, scalar, vector, and matrix operations are also sup-
ported. The cfloating type substitutes the real, double precision MATLAB type,
the complex arithmetic is not supported directly. By algorithms involving complex
computation, the user must decompose the complex operations to real arithmetic
by hand. We are planning to add direct support of complex arithmetic in the
future.

7.1.1 The main m-function

Algorithm 3 Main function

1:  function main( identifier )
2: identifier=miller ptr(identifier);

3: Initializing the input as cfloating arrays
and adding the input nodes to the graph

4: Run the algorithm using cfloating type
to add the arithmetic nodes
and compute the output as cfloating array

5: Add the output nodes to the graph
end

The main m-function is the m-function that is dedicated to be called by the
error analyser, when the computational graph has to be built. Algorithm 3 shows
the general form of the main m-function. As in line 1, the main m-function must
have one input argument and it must not have any output arguments. To make
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MATLAB able to find our main m-function, it has to be reside in an m-file with
the same name, and the m-file must be on the MATLAB path or in the working
directory. Line 2 fulfills a formal requirement, all such m-functions have to be
begun with that statement. Actually it creates a handle to the computational
graph being built and we will use it for several purposes (instead of ’identifier’
any valid variable name can be used).

In our model the analysed numerical method computes a function P (d) (P :
R" — R* d € R™ is the input vector) The length n of the input vector d is always
fixed for analysis, error maximization is performed in the n dimensional space R".

In many cases P is not defined at every point in R", since no division by zero
may occur and no square root of a negative number may be taken. If the MATLAB
interpreter encounters such an operation, it signals the error condition by throwing
an exception. The maximizer catches the error, so the maximization process is not
terminated, but continues at other data d.

We say that a numerical algorithm is a straight-line program, if it does not
contain branches depending directly or indirectly on the particular input values,
and the loops are all unrollable taxative loops. In the case of such programs a
unique computational graph represents the algorithm (assuming that the number
of inputs is fixed), so it is enough to call the main m-function and build the
computational graph only once!. On the other hand, if the flow of control depends
on the input values, we regenerate the graph by calling the main function at every
d input data, upon which the error measuring number is to be computed. In such
cases, the number of arithmetic operations may also depend on d.

In a computational graph, there can be four kinds of node. First we add the
input nodes that correspond to the n entries of the input vector d (see line 3).
In the next step (line 4) we run the algorithm on d. Beside evaluating the m
operations, we also add m arithmetic nodes to the graph. We distinguish six kinds
of arithmetic nodes: four correspond to the binary operations (+, -, *, /) and two
to square root and unary minus. A constant value may also appear as operand
in an operation. In the graph, constant nodes corresponds to the constant values
used in the algorithm. Finally, some of the arithmetic nodes are designated as
output nodes meaning that the result of the given operation is one of the output
values of the algorithm (line 5). In order to evaluate the error measuring number
at d, the partial derivatives of the values corresponding to the output nodes with
respect to the values corresponding to the input nodes and the relative rounding
errors hitting the arithmetic nodes will be computed.

'In some cases we run the algorithm at the first time in order to count the operations and
determine the amount of memory to allocate, and make an additional call to build the graph.
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7.1.2 The input nodes

Assume that the main m-function is called, and the MATLAB interpreter is about
to execute line 3. At that point, the number n of inputs is fixed and the actual
floating point values of the inputs, the entries of d are set. Our task is to create
and initialize input variables of type cfloating with the values of d, and add the
corresponding n input nodes to the computational graph. Three routines will help
us: input_size, input, parameter.

input size Syntax:
n = input_ size( miller )

The function returns the number of inputs into n. Here and in the following, the
parameter miller is the same variable as in algorithm 3 line 2.

input Syntax:

= input(miller)

= input(miller,n)

= input(miller,m,n)
= input(miller,[m n})

= input(miller,mmn,p,...)
= input(miller,;m n p ...])

Using the variants of function input, we can create variables of cfloating type.

The input vector d can be read as a sequential file. At the beginning a pointer
points to the first entry, and after reading the current entry, the pointer is in-
cremented to point the next element of d. Unless we read exactly n elements
applying one or more times the input statement during the execution of the main
m-function and its subfunctions, we get an error message. Another restriction is
that we cannot read an entry more than once, since there is not 'rewind’ or ’seek’
routines.

1. B = input(miller)
reads one floating point value from d, adds an input node to the computa-
tional graph, and returns a scalar of type cfloating initialized with the value
and the identifier of the node currently added.

2. B = input(miller,n)
reads n? elements from the input vector, adds the corresponding input nodes,
and returns an n-by-n cfloating matrix initialized with the value - node iden-
tifier pairs in column major order. It has the same effect as:
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for j=1m
fori = 1:n
B(i,j) = input(miller);
end
end

3. B = input(miller,m,n) or B = input(miller,[m n])
returns an m-by-n cfloating matrix with elements initialized just as above,
but with m - n elements instead of n?:

for j=1m
fori = 1:m
B(i,j) = input(miller);
end
end

4. B = input(miller,m,n,p,...) or B = input(miller,[m n p...])
returns an m-by-n-by-p-by-... cfloating array initialized with m -n-p- ...
currently read and added value - node identifier pairs in column major order.

parameter In most cases all the size parameters of a numerical algorithm cannot
be deduced from the number of inputs. For example, assume that we would like
to analyse an algorithm for least square solution of an overdetermined system
|Axz — b|| — min. In that case the function input size will return the number of
the elements in the extended matrix [A b}, but it does not determine uniquely
the number of equations and unknowns. For such cases the user can pass a vector
of parameters to the main m-function while calling the error analyser routines.
The parameter vector is a double precision array. It is the users decision what
parameters to use by implementing the input algorithm, and how to arrange it
into a single vector, or to use parameters at all.

Syntax:

b = parameter(miller,i)

returns the i-th entry of the parameter vector served by the user.

Using global variables is another approach to passing parameters, and would
also work fine. However, using the parameter statement is safer than global vari-
ables, because the software monitors the parameter vector for changes. We have
mentioned that by straight-line programs the computational graph is generated
only once. If the parameter vector changes, it is guaranteed that the main m-
function will be called and the graph will be regenerated. If parameters are passed
by global variables, it is up to the user to ensure that the graph is regenerated.
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7.1.3 The arithmetic nodes

The desired arithmetic nodes can be added to the computational graph by ex-
ecuting arithmetic operations on cfloating arrays. MATLAB has two different
types of arithmetic operations. Matrix arithmetic operations are defined by the
rules of linear algebra. Array arithmetic operations are carried out element by
element, and can be used also with multidimensional arrays. The period character
(.) distinguishes the array operations from the matrix operations. The cfloating
array supports both types with the restriction, that matrix division, elementwise
power and matrix power are not allowed. Note that the cfloating array supports
only real arithmetic, it does not store imaginary part and cannot perform complex
operations. The following operators can be used with cfloating arrays:

1. Addition or unary plus®>. A+ B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any size.

2. Subtraction or unary minus®. A — B subtracts B from A. A and B must

have the same size, unless one is a scalar. A scalar can be subtracted from
a matrix of any size.

3. Matrix multiplication. C = A % B is the linear algebraic product of the
matrices A and B. For nonscalar A and B, the number of columns of A
must equal the number of rows of B. A scalar can multiply a matrix of any
size. If both A and B are matrices C' = A % B has the same effect as:

[n,k] = size( A );
[1,m] = size( B );
assert( k == 1, 'Inner dimensions must agree!” );

fori=1:n
forj=1:m

C(i,j) = 0.0;
fork=1:1
C(ij) = C@.J) + A(Lk) * B(k,j);
end
end

end

4. Array multiplication. A .x B is the element-by-element product of the arrays
A and B. A and B must have the same size, unless one of them is a scalar.

2Unary plus does not add a node to the graph, just returns the same cfloating array.
3Unary minus always considered to be error free.
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5. Division by a scalar. B/a is the matrix with elements B (i,j) /a (a is a
scalar). Note that this definition differs from the built-in version, where
B/A is the matrix division B * inv (A).

6. Array right division. A./ B is the matrix with elements A (7, j) /B (i,j). A
and B must have the same size, unless one of them is a scalar.

7. Array left division. A.\ B is the matrix with elements B (i,j) /A (i,7). A
and B must have the same size, unless one of them is a scalar.

8. Square root. sqrt (A) is the element-by-element square root of the array A.

The above cfloating operations computes the floating point values of the entries
of the resulting arrays and adds the arithmetic nodes corresponding to the elemen-
tary operations evaluated. The results will be cfloating arrays with elements equal
to the resulting value - node identifier pairs.

Combining cfloating with built-in data type double The cfloating version
of the above operators will be called, if at least one of the operands is of type
cfloating. In the mixed cases, when one operand is a cfloating array and the other
is a double precision MATLAB array*, the entries of the built-in typed array are
considered to be constants. The operation is only executed after the corresponding
constant nodes have been added. For a particular value a constant node is added
only once for the whole execution. For example if B is a cfloating matrix, then
C' = zeros (size (B)) + B will add only one constant node for the value 0.0, and
every entry will refer to that node. Furthermore all additional occurrences of the
constant value zero, will refer to that previously added node.

The function cfloating() Sometimes it is necessary to explicitly convert a built-
in double precision array to cfloating type.
Syntax:

C' = cfloating(B)

returns a cfloating array, which have the same size as B. The value part of the
entries of C' will be initialized with the corresponding elements of B, but no nodes
will be added to the graph, and the node identifier part will be set to zero. The
addition of the constant node corresponding to an entry of C' will be postponed
until the first occurrence of the particular entry in an arithmetic operation. In
the following we shall refer to a value without corresponding graph node as an
unregistered value. If B is already a cfloating array, the function has no effect.

4cfloating can be combined only with double in binary operations
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Programming with cfloating MATLAB is a matrix-based computing environ-
ment with sophisticated matrix and array manipulation methods. The following
functions works with arrays of any type without explicitly defining (overloading)
them, so these methods have the same behavior in conjunction with cfloating as
with built-in types. For detailed description see the MATLAB help.

1. Matrix concatenation functions. cat, horzcat, vertcat, repmat, blk-
diag. Function horzcat(A, B, C,...) is a synonym for [A, B, C,...], and vert-
cat(A,B,C,..) for [A; B; C;...]. In the case of cat, horzcat, vertcat and blkdiag
combination of cfloating and built-in types is also allowed. If at least one of
the arguments is a cfloating array, the arrays of built-in type will be converted
to cfloating arrays with unregistered values, and then concatenated. So D =
[A, B, C] has the same effect as D = [cfloating (A) , cfloating (B) , cfloating (C')].

2. Matrix indexing. The various indexing schemes of MATLAB can also be
applied to cfloating matrices and multidimensional arrays on both sides of
the assignment operator, but the cfloating array itself must not be used as
an index. A submatrix resulted from a cfloating array by indexing will be
also of type cfloating.

3. Getting information about a matrix. The functions: length, ndims,
numel, size, isempty, isscalar, isvector can be used in the same way as for
built-in types.

4. Reshaping a matrix. The functions: reshape, rot90, fliplr, flipud, flipdim,
transpose, permute, ipermute, circshift, shiftdim can also be used. (trans-
pose(A) is the same as A’).

A good m-file programming practice is preallocating arrays before loops to
avoid their growing inside the loop. Preallocating leads typically to a situation,
where explicit conversion to cfloating is necessary. Consider the case of matrix
multiplication. Assume that algorithm 4 called with cfloating matrices. If we omit
line 6, then an error occurs at line 10. Without line 6 the right-hand side: C(i,j) +
A(i,k) * B(k,j) at line 10 results a cfloating scalar, but C is still a double matrix.
By such indexed assignment with different types, as in line 10, MATLAB tries
to convert the right-hand side value to the type of the left-hand side. However,
automatic conversion from cfloating to double is not allowed, which yields an error.

Algorithms that are not straight-line programs In this section we will see,
how we can make the flow of control depend on the value of cfloating arrays.

1. The function value.
Syntax:
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Algorithm 4 Matrix multiplication

1:  function C = mtimes(A,B)
2: [nk] =size( A);
3:  [Lm] = size( B );
4:  assert( k == 1, 'Inner dimensions must agree!’ );
5:  C = zeros(n,m);
6: C = cfloating(C);
7. fori=1:n
8: forj=1:m
9: fork=1:1
10: C(i,j) = C@,j) + A@i.k) * B(k,j);
11: end
12: end
13:  end
C' = value (B)

If B is a cfloating array, it returns with the value part of B. C' will be a
built-in typed double array with the same size as B. We have mentioned,
that automatic (implicit) conversion of cfloating to double is not allowed,
but with value we can make explicit conversion. After we have gained access
to the floating point value of cfloating variables, based on them, we can
construct conditional expressions for if tests and while loops.

. Relational operators. For convenience we have defined the relational op-

erators (<, >, <=, >=, ==, =) on cfloating arrays. Hence, cfloating
arrays can directly (without the value function) be operands of relational
expressions. For instance a > 0.0 has the same effect as value (a) > 0.0.

If either a value function or a relational operator in conjunction with a cfloating

value occurs in the m-file implementation of the input algorithm, the main m-
function will be called and the computational graph will be regenerated at every
set of input data, upon which the error measuring number is to be computed.

Constrained error maximization Actually the stability analysis by Miller
Analyser for MATLAB is the maximization of an error function w (d). Beside
unconstrained optimization, we can also perform constrained optimization. The
function constraint is used to define constraints for the search for large values of
the error measuring quantity.

Syntax:
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constraint (miller, V)

Here, V can be either a cfloating or a double array. If V is cfloating typed, then it is
first converted to built-in type double by calling value(V'). The entries of V is then
added to the vector of constraints C'(d). The i-th element of C' (d) represents the
constraint C; (d) > 0. The constrained optimization is realized through penalizing
the value of w (d) at inputs for which any C; (d) is near to or less than zero. The
error measuring value is simply multiplied by min (1, Cy,Cy, ..., C}) (n > 0), and
the maximization is performed on that penalized error measuring value.

The weak composition model Syntax:
composition(miller)

instructs the error analyser to apply the weak composition model of error propa-
gation. Suppose F' is a program for computing f (d). Calling function composition
separates F' into two subprograms H and G: H consists of the arithmetic oper-
ations performed before the invoking of composition and G consists of the later
operations. The weak composition model assumes that the operations are exact
but intermediate values are rounded as they passed from H to G. At most one
composition statement can be executed.

Error handling By executing the m-files implementing the input algorithm
many kinds of error condition may arise. We distinguish terminating and non-
terminating errors. If a terminating error occurs, the process of error maximiza-
tion is aborted and control returns to the MATLAB prompt with an error message.
When we execute the input algorithm upon the initial input vector, all the errors
are terminating errors.

In the case of non-straight-line programs the main m-function is called at every
set of data, upon which the error measuring quantity is to be evaluated. By these
further executions a non-terminating error may also occur. A non-terminating
error aborts only the execution of the input algorithm, but maximization is con-
tinued by evaluating the error measuring quantity upon other input vectors. If
it is not the initial execution, division by a non-constant cfloating variable with
value zero, or taking the square root of a negative number (non-constant, cfloat-
ing) causes a non-terminating error. The user can also trigger a non-terminating
error by calling alg error:

Syntax:

alg _error(miller,message)

The function also prints an error message to the MATLAB prompt. All other error
conditions terminate the maximization of roundoff errors.

33



7.1.4 The output nodes

The final step of building a computational graph is choosing the output nodes of
the algorithm from its arithmetic nodes. The values corresponding to the output
nodes are those, whose numerical stability will be analysed.

Syntax:

output(B)

The node identifiers corresponding to the elements of the cfloating array B are
added to the vector of outputs. Every element of B must be a computed value,
so only arithmetic node may become an output node. Several output statements
may be executed, but a single node must not be added more than once. The
vector of outputs is written by the output function, as a sequential file: A pointer
is maintained to designate the index where the next element is to be put. If B has
n entries, the pointer is incremented by n.

7.2 Doing the analyses

In this section we will see how we can analyse the numerical stability of algorithms
defined according to the rules given in the previous section.

7.2.1 Creating a handle to the error analyser

To perform error analysis, an object of class miller have to be created. By creation
we must provide the name of the main m-function of the input algorithm. For
comparing numerical stability of two algorithms solving the same problem the user
must provide the names of the two main m-files of the algorithms to be compared.
Syntax:

m = miller(mfunction)

Analysing a single algorithm m-function is a string containing the name of the
function defining the method to analyse. By comparing, mfunction contains two
names delimited by ’/’. Note that the names have to be given without the *.m’
extension. In the following m will denote a properly created object of type miller.

7.2.2 Setting the parameters of maximization

By the set method parameters can be set, which determine how the analysis will
be performed.

1. We can analyse stability according to several error measuring quantities.
Syntax:
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m = set(m, ’error _measure’,errorstr)

Sets the error measuring quantity to maximize. errorstr is a string con-
taining the name of the desired error measuring quantity. Analysing a single
algorithm the values of errorstr can be: 'wkl’, "'wke’, 'jwl’, ’jwe’, ’erl’, ’ere’
for the appropriate error comparing value. To compute condition number
errorstr is set to ‘cnl’ or 'cne’ for normwise and elementwise condition num-
ber. Assume that we are comparing two methods and 'methodl/method2’
was the m_function argument by constructing of the miller object. The
value ’jwl/2’ will set the error comparing value to JWiyethodt /methoaz. Simi-
1aﬂy ’jWZ/]-’; ,er1/27; 761‘2/1’ will set Jvae1',hod2/me‘chodi7 ERnethodi/method2 and
ERnetnoaz/metnoat Tespectively. For details about the error measuring numbers
see pages 89-94 in the book by Miller and Wrathall [58].

2. The stopping criterion of maximization can also be set.
Syntax:

m = set(m, 'stop__crit’,v)

Sets the stopping criterion for the given value v. v must be a scalar. The
maximization terminates, if this value is reached. Zero turns off testing on
reaching a stopping value.

7.2.3 Error analysis

1. For testing purposes we can omit computing error measuring quantities and
just run the input algorithm.
Syntax:

output = run(m,d)
output = run(m,d,p)

Returns the output vector of the input algorithm. d is a double precision
MATLAB array with the input data. If d is a matrix it will be vectorized in
column major order. The entries of the vector d will be read by the input
statement (see section 7.1.2). p is the parameter vector. Its entries can be
reached in the input algorithm by the parameter statement as in section 7.1.2
described. If p has more than one dimensions, it is also vectorized in column
major order.

2. Computing error measuring numbers at a given set of data d:
Syntax:

35



rho = <errormeasure>(m,d)
rho = <errormeasure>(m,d,p)

d and p are the same as above. <errormeasure> can be substituted with:
wkl, wke, jwl, jwe, erl, ere, cnl, cne, jwlvs2, jw2vsl, erlvs2, er2vsl for
the desired error measuring number. For example jwlvs2 will compute
JWhetnoat /metnoaz- The calling also sets the ’error _measure’ argument to the
error measuring quantity being computed. So calling maxsearch after one of
these function will maximize the error value has just been computed.

3. For performing maximization the function maxsearch have to be used:
Syntax:

[rho, dfinal] = maxsearch (m, dinit, methodcode)
[rho, dfinal] = maxsearch (m, dinit, methodcode, p)

dinit is the input data vector from which the maximization starts, methodcode
is a string: 'ros’, 'nms’, 'mds’ to perform optimization using the Rosenbrock,
the Nelder-Mead simplex, or the Multidirectional Search by Torczon respec-
tively. p is the parameter array as above.

Error handling We have mentioned in section 7.1.3, that terminating and non-
terminating errors may occur during execution of the input algorithm. Further
nonterminating errors may arise during the computation of the error measuring
quantity. The nonterminating errors do not abort the error maximization process.
The evaluation of the error measuring quantity fails at the given set of data, but
maximization continues. The nonterminating errors are counted, and at the end
of maximization we can get a report about the errors encountered. As in section
7.1.3 described: by the first evaluation of the error measuring value all errors are
terminating errors. So, the computation must be error-free at dinit to perform
maximization. The nonterminating errors are the following:

1. Division by zero or taking the square root of negative number during the
execution of the input algorithm.

2. By computing wkl, wke, jwl, jwe, jwlvs2 or jw2vsl we may get the error
message 'OMEGA failure’. This arise, if either the number of operations
that are not error free, or the number of inputs is less than the number of
outputs.

3. By the same error measures as above 'DIAGON failure’ arises if the error
measuring number cannot be computed accurately because of rank deficiency.

36



4. By computing erl, ere, erlvs2, er2vsl we can get ’'GETER failure’. These
error measuring quantitie are the quotient of the norms of two matrices. The
error is encountered, if the divisor is zero.

5. If computing the condition number fails we get '"CONDIT failure’.

Functions reset and resetcounter The miller object uses dynamic memory
allocation: it grows for the needs, but automatically it does not free up memory.
If we would like to free up the memory owned by the object, reset must be called.
Syntax:

reset(m)

Frees up the memory allocated by m. The object will be the same state as if it
were created right now.

By maxsearch beside the errors the evaluations of the error measure is also
counted. The counters can be reset calling resetcounter.
Syntax:

resetcounter(m)

Before calling maxsearch again, reset or resetcounter need to be called.
Syntax:

destroy(m)

Frees up all the memory allocated by m. Referencing to m after calling destroy
causes segmentation violation!

The display function The display function is also defined for the miller class.
This function called for built in MATLAB types, if their values are printed when
the semicolon omitted. Display returns several information on the actual object.

8 Applications

8.1 (aussian elimination, an important example

The numerical stability of the Gauss method and its variants is in question, since
von Neumann, Goldstine, Turing, Fox, Huskey and Wilkinson advocated it as an
efficient sequential computer solver for linear algebraic systems of the form Az = b.
Due to mainly Wilkinson [79], [80], [39] we know a lot about the numerical stability
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of the Gaussian elimination method. Hence it is a good and quite significant
algorithm to test the efficiency of the Miller method.

Using the original version of the method [57], Miller analyzed the numerical
stability of Gaussian elimination solving the linear system Az = b (A € R"™*",
b € R™) without pivoting and with partial pivoting (for details see [58]). Our
software, which is available on

http://phd.uni-obuda.hu/images/milleranalyzer.zip,

can easily reproduce the results obtained by Miller. For details about the use of
the software see our User’s Manual [34].
We consider first the procedure without pivoting. Algorithm 5 shows an m-

Algorithm 5 Gaussian elimination

1:  function b = gauss( A, b )

2: % Gaussian elimination
3:  [nm] = size(A);
4: assert( n == m, A is not a square matrix!’ );
5:  m = numel( b );
6: assert( n == m, ’b must have as many elements as the columns of Al’ );
T %
8: % Elimination
9: fork=1:n-1
10: fori=k+1:n
11: amult = A(i,k) / A(kk);
12: A(i,k+1m) = A(i,k+1:n) - amult * A(k,k+1:m);
13: b(i) = b(i) - amult * b(k);
14: end
15:  end
16: %

17: % Back substitution

18: fori=mn:-1:1

19: b(i) = ( b(i) - A(i,i+1:n) * b(i+1m) ) / A(i,i);
20:  end

file implementation appropriate for analysis. The software can easily find linear
systems for which w is extremely large. We fixed the size of the problem at n = 4.
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Started from a randomly chosen data set, the Rosenbrock method located:

0.7447 0.1774 0.5546 —0.0404 0.8414
A~ 0.7136 0.1681 0.5303  0.9408 b~ —0.4787

0.7440 0.8149 0.9112  0.5309 |’ 0.3505 |’

1.0416 0.1674 —0.6000 0.7108 —0.2878

where w (A,b) ~ 2.1283¢ + 011. Matlab’s condition estimation function gives:

cond (A) ~ 5.6179, so Gaussian elimination without pivoting can be unstable at

very well-conditioned data.

Algorithm 6 Gaussian elimination with partial pivoting

function b = gpp( A, b))
% Gaussian elimination with partial pivoting
[n,m| = size(A);

assert( n == m, ’A is not a square matrix!” );

m = numel( b );

assert( n == m, 'b must have as many elements as the columns of Al’ );
%

% Elimination
fork=1:n-1
[maxval, maxi] = max( abs( value( A(k:nk) ) ) );
maxi = maxi + k - 1;
A( [kmaxi], kin ) = A( [maxik], kmn );
b( [k,maxi] ) = b( [maxi,k] );
fori=k+1:n
amult = A(i,k) / A(kk);
A(ik+1:m) = A(i,k+1:n) - amult * A(k,k+1:m);
b(i) = b(i) - amult * b(k);
end
end
%
% Back substitution
fori=mn:-1:1
b(i) = ( b(i) - A(i,i+1:n) * b(i+1m) ) / A(i,i);
end

Consider Algorithm 6 implementing Gaussian elimination with row interchanges

(partial pivoting). Partial pivoting is performed from line (10) to (13). In line (10)

we find the pivoting element with maximal absolute value using the built-in Mat-
lab functions max and abs. On the other hand, the function value is designed
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especially to work with variables of cfloating type. If B is a cfloating array,
C' = value (B) returns the floating point value of B, and C' will be a built-in
typed double array with the same size as B. Automatic (implicit) conversion of
cfloating to double is not allowed, but with value we can make explicit conver-
sion. After we have gained access to the floating point values, we can use the
function abs, which is not defined on cfloating type. Being the row index of
the pivoting element determined, we interchange the appropriate rows in lines (12)
and (13). For Algorithm 6 and n = 4 the maximizer was not able to push w above
6.0, which is in accordance with the well-known fact that the Gaussian elimination
with partial pivoting is backward stable.

8.2 The analysis of the implicit LU and Huang methods

Using the software package we have analyzed the numerical stability of solving
the Az = b linear system (A € R™" b € R") with the implicit LU and Huang
methods. These methods are special variants of the ABS methods [1], [2]. The
linear ABS methods are projection methods of the form:

Algorithm 7 Linear ABS method
x1 €R" Hy =1,V =[vg,...,0,] € R™™™,
W = [wy, ..., w,] € R™™ Z = [z, ..., 2,] € R""
fork=1,...n
pe = H 2 (zx € R, pf ATwy, #0)
Py (Azy,—b)

Thtl = Tk = vy, Apr,
- HkATvkngk n T T
Hk+1 —Hk m ('lUkER s U)kaA Uk;é())

end
Tntl1 = A_lb

8.2.1 The implicit LU method

The implicit LU algorithm is given by the choice W = Z = I. We consider the
special case, when V = I and x; = 0. Algorithm 8 shows the method to analyze.
Let the initial data for maximizing be:
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Note that in the case of Algorithm 8 the maximization is implicitly constrained
to strongly non-singular systems. We have chosen 10000 as target value. The
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Algorithm 8 Implicit LU method

T = 0, Hl =1
fork=1,...n
Hlepel (Axy—b)
— _ k k
Tk+1 = Tk egAngk
. HkATekeng
Hypyr = Hy — THyAT ey,
end

maximizer finds values greater than the target value for both W K, and E R, error-
measuring numbers. Because of the inequalities hold between the error-measuring
numbers, a set of data exists for all error-measuring numbers, where their values
exceed 10000. In addition at the final set of data the condition number is extremly
low. In the case of W K7, it is 12.3, and in the case of F Ry it is 8.1. So the implicit
LU algorithm is unstable even at very well conditioned data.

Compared the algorithm with Gaussian elimination without pivoting the re-
sults are:  JWiy/gauss > 10000, JWeaaussyro > 10000, ERpy/causs > 10000,
ERGauss/Lu < 29. So the implicit LU has worse stability properties, than Gaussian
elimination without pivoting.

8.2.2 The Huang method

The algorithm is obtained by the choice w; = z; = ATv; we have analysed four
variants of the method. With the given substitutions applied to the general ABS
algorithm we get the first variant:

Algorithm 9 Huang method, first variant
r1 €R" H =1

fork=1,...n
_ T AT
T

_ prey (Azg—b)

Ty = Tp — ——Lp
k1 = Tk T Ap,

- HkATekegAHk

Hk-‘rl = Hk} - QEAHkATek

end

In the case of the Huang method the maximization is implicitly constrained to non-
singular sytems, because otherwise division by zero would occur. We have started
the maximizer from the same initial data Ag, by as in the case of the implicit LU
method. Applying the maximizer FR; and W K have exceeded 10000, so the
method is unstable. Unlike the case of implicit LU large values were found at ill-
conditioned data (61710 for W K, and 32365 for ERy). So the algorithm is more
sensitive to ill-conditioning than it is reasonable. Comparing the algorithm with
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the modified Gram-Schmidt method, we get the results: JWgyang/mas > 10000,
IWnas/Huang < 3400, ERpyang/mas > 10000, ERyGs/Huang < 2050. So there are
both sets of data where the Huang, and sets of data where the MGS method gives
much poorer results.

If we consider that H; = H}, then the algorithm can be modified as follows:

Algorithm 10 Huang method, second variant
r1 €ER" H =1

fork=1,...n
_ T AT
P = Hk A (A%
T
_ Pr€y (Azp—b)
T =, —
k+1 k T Apy
T
H,., = H, — Pk
k41 kT A,
end

In this case we have got very similar result to the previous algorithm. Comparing
the two method all the error-measuring numbers are bounded by 6.1. Thus the
two variants have the same stability properties.

The following variant is based on the fact that H? = H;:

Algorithm 11 Huang method, third variant
T € Rn, H =1

fork=1,...,n
— T AT
T
Prej (Azy,—b)
xr =X _
k+1 k EZAP}C

T

Hipy = Hy, — 20

k+1 k pfpk

end

We have got values for ER; and W K exceeding 10000 also at ill-conditioned sets
of data. Comparing the algorithm with the MGS method we get similar results
to the previus two cases. If we compare the method with the second variant,
we get that all error-measuring numbers are not bounded by 10000 except that
E RHuangs/Huangz < 1.5. So the third variant is more stable than the previous ones.

The fourth analysed algorithm was the so called modified Huang method. See
Algorithm 12. In this case the maximizer cannot find value for JW, greather than
4.3, so the algorithm is backward stable. Comparing with the MGS method the
results are: JWHuang/MGS < 561, JWMGS/Huang > 10000, ERHuang/MGS < 20,
ERyGS/Huang < 4038. So the modified Huang has better stability properties than
the MGS method. If we compare the method with the previous (third) variant,
we have that: ERpyanga/Huangs < 1.23, JWHuangs/Huangs < 1.6, the other two
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Algorithm 12 Modified Huang method
r1 €ER" H =1
fork=1,...n

Pk = Hk (H,;FATek)

Pk 6? (Azy,—b)

T =2 —
k+1 k efTAPk
Hy., = H, — Eke
k+1 kT T
end

numbers are not bounded by 10000. So the method is much more stable, than the
previous variants of the Huang method.

8.3 An automatic error analysis of fast matrix multiplica-
tion procedures

The multiplication of two n x n matrices requires O (n?®) arithmetic operations by
the standard Cayley definition. For large n, faster or cheaper matrix multiplication
methods are clearly important for the applications since the 1950’s. The first
such method was constructed by Winograd [81]. He observed that for matrices
A, B € R™" (n is even), the entries of C'= AB can be written as

n/2 n/2 n/2
Cif, = Z (@i2j—1 + bajk) (ai2j + baj_1k) — Z ;2510525 — Z boj—1kY2jk-  (7)
j=1 j=1 j=1

The second sum depends only on index ¢, while the third one depends only on index
k. Since the last two sums can be precomputed and then used in the computation
of the entries of C', we can save approximately half of the multiplications at the
expense of extra additions. The method requires (1/2) n® +n? multiplications and
(3/2)n® + O (n?) additions. If a multiplication takes much longer time than an
addition, the method has a clear advantage.

The next step of developing fast methods is due to Strassen [74], who con-
structed a recursive matrix multiplication algorithm that requires O (n'°¢27) arith-
metic operations. For simplicity, assume that n = 2¢. Partition matrices A and B
such that

A Ap Bi1 Bis nyn
A= , B= Aii, By € F272) .
{ Ay Ap By Bao ( 7 )

Strassen’ method is based on the observation that

C(11 C’12 :|

C=AB=
[021 Coz
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can be computed in the form

My = (A1g — Ag) (Ba1 + Ba), Ci = My + My — My + Mg,

My = (A11 + Ag) (B11 + Ba), Cia = My + Ms,

M3 = (A1 — An) (B + Bha), Oy = Mg + My,

My = (A1 + Ajs) B, Coo = My — M3 + M5 — M. (8)
M5 = Ay (Bia — Bag),

Mg = Ay (Bar — Bi),

M7 = (Aa1 + Ago) B,

This arrangement requires 7 multiplications and 18 additions of two 7 x § matrices.
Using recursion for the matrix multiplications one finds that the total cost of the
method is O (n'°¢27) arithmetic operations (see also [15].

Somewhat later Winograd [82] gave the following variant of Strassen’s algo-
rithm with the same O (n1°g2 7) arithmetic cost.

S1 = Ao + Ago, M, = 55Ss, Ty = M + My,

Sy = 51 — A, My = A B, Ty =T\ + My,

Sy = Ajy — Ay, Mz = A;3DBs,

Sy = Ayp — S, My = S3S7, Ci = My + Ms, 9)
Ss = Bia — By, Ms = 5,5, Cio =Ty + Ms + M,

Se = Bay — S, Mg = S4Ba, Coy =Ty — My,

S7 = Bay — Bia, M7 = ApSs, Cy =15 + Ms.

Sg = S¢ — By,

Winograd’s variant requires 7 multiplications and 15 additions of two § x 7 ma-
trices.

These results initiated an intensive research on the development of faster matrix
multiplication methods and there are several ones (see, e.g. [66], [18], [40], [41]).
Today’s fastest method is due to Coppersmith and Winograd [14] and its arithmetic
cost is O (n?37). For practical purpose, however only Strassen’s method and its
Winograd variant are advocated. Most of the related papers are concerned with
the complexity and/or implementation issues on computer architectures of different
types. As for the implementations, we refer only to the papers by D’Alberto and
Nicolau [16], [17]. Only a few papers deal with the numerical stability of these fast
matrix multiplication algorithms and it is a common belief that such methods are
numerically unstable (see, e.g. Higham [39]). Brent [7], [8] gave the first formal
error analysis of Winograd’s first method and the method of Strassen. For the
latter, Brent [8] proved the following perturbation result.

Theorem 1 Let A, B € R™", where n = 2. Suppose that C = AB is com-
puted by Strassen’s method and that ny = 2" is the threshold at which conventional

44



multiplication is used. The computed product C satisfies

=R log, 12
le-¢| =< [(3> (n2 + 5ng) — 5n| wl|A| 1Bl + O (u?).  (10)

no

Here w is the unit roundoff, that is u = %B 1=t where 3 is the base or radix and
t is the precision of the floating point number system (see, e.g. Wilkinson [80],
Higham [39] or Muller et al. [62]).

Higham [38] obtained a similar result and the above formulation of Brent’s
original result is given by him. The numerical stability of Strassen’s method was
also investigated by Dumitrescu [20]. The numerical stability of the Winograd-
Strassen algorithm was investigated by Higham [39].

Theorem 2 Let A, B € R™*", where n = 2°. Suppose that C = AB is computed
by the Winograd-Strassen method (9) and that ng = 2" is the threshold at which
conventional multiplication is used. The computed product C' satisfies

log, 18
(ﬁ) " (2 + 6no) — 6n

e-2l <
o

ullAJIBII+0 (w*) . (1)

The Winograd-Strassen algorithm is built in IBM’s ESSL software package (see,
e.g. [19]) and there is also a United States Patent No. 7209939 for the precision
improvement of the algorithm.

For the standard computation of C = AB (A, B € R™™), we have the error
bound R

‘c—c‘ < yulAl|B]+ 0 (u2), (12)

where v, = n and |A] = [Ja;[]],_; (see, e.g. [80], [36], [39]). Miller [50], [51]
showed that if a matrix multiplication algorithm satisfies an error bound of the
type (12) and uses only scalar addition, subtraction, and multiplication, then it
must perform at least n® multiplications. Consequently, algorithms (8) and (9)
cannot satisfy the bound (12) that is considered optimal in a sense (see, e.g. [46]).

For further stability analysis of fast matrix multiplication methods, we also
mention the papers of Bini and Lotti [3], and Demmel et al. [18]. An excellent
survey of the matter is given in Higham [39].

The gaps between bounds (10), (11) and (12) indicate the possibility of nu-
merical instability already observed in some cases (see, e.g. [38], [39]. Here we
make a systematic error analysis of Winograd’s first method, the Strassen and
Winograd-Strassen methods using an improved version of Miller’s automatic error
analyzer.
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8.3.1 Numerical testing

Here we analyze the traditional matrix multiplication, Winograd’s first algorithm
(7), the Srassen algorithm (8) and the Winograd-Strassen algorithm (9).

The Matlab programs of the above algorithms can be found in Algorithm 13-17:

Algorithm 13 Winograd’s method

1:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

function C=Winograd(A,B)

[m,k]| = size( A );

[In] = size( B );

assert( k == 1, "Inner matrix dimensions must agrree!” );

assert( mod(k, 2) == 0, ’Inner matrix dimensions must be even!’ );
%o

rowFactor = feval( class(A), zeros( m, 1) );
columnFactor = feval( class(A), zeros( 1, n ) );

for i=1:m
rowFactor(i) = A(i,1:2:k) * A(i,2:2:k)’;
end
for j=1:n
columnFactor(j) = B(1:2:k,j)’” * B(2:2:k,j);
end
C = -repmat( rowFactor, 1, n );
%
C = C - repmat( columnFactor, m, 1 );
%
for i=1:m
for j=1:n
C(i,j)=C(1,j)+(A(1,1:2:k)+B(2:2:k,j) ") *(A(1,2:2:k) '+ B(1:2:k,j));
end
end

There have been a comparison between the standard matrix multiplication

and the three faster algorithms. Furthermore there was a comparison between the
Strassen and the recursive Winograd methods. The initial matrices A and B were

A:

11
11
11 B =
11

— == s
— =R =
— s =
>~ = =

11
11
11|’
11

The obtained result are the following.
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Algorithm 14 Strassen’s method

1:  function C=Strassen(A,B)

2: [mk]| = size( A );
3:  [Ln] =size( B );
4: assert( m == k , A must be a squere matrix!” );
5: assert( k ==1, B must be a squere matrix!’ );
6: assert( 1l ==n, ’A and B must be the same order!” );
70k =uint32( m );
8: assert( bitand( k, k- 1 ) == 0, 'n must be the form of 2°k’ );
9. %
10: ifn==1
11: C=A*B;
12: return;
13:  end
14: d=n/2;
15: dl=d+ 1;
16: %

17 All=A(1:d,1:d);
18:  Al12=A(1:d,d1l:n);
19:  A21=A(dl:n,1:d);
20:  A22=A(dl:n,dl:m);
21: %

22:  B11=B(1:d,1:d);
23:  Bl12=B(1:d,dl:n);
24:  B21=B(dl:n,1:d);
25:  B22=B(dl:n,d1:mn);
26: %

97:  [C11,012,021,022]=Str2x2(A11,A12,A21,A22,B11,B12,B21,B22);

C(1:d,1:d)=C11;

C(1:d,d1:n)=C12;
31:  C(dln,l:d)=C21;

C(d1n,d1:n)=C22;
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Algorithm 15 Strassen’s 2 x 2 matrix product

1: function [C11,C12,021,C22]=Str2x2(A11,A12,A21,A22,B11,B12,B21,B22)
2: % Strassen 2 x 2 matrix product
3:  MIl=Strassen( A12-A22, B214+B22 );
4:  M2=Strassen( A11+A22, B11+B22 );
5:  M3=Strassen( A11-A21, B11+B12 );
6: Md4=Strassen( A11+A12, B22);
7:  Mb5=Strassen( All, B12-B22 );
8: M6=Strassen( A22, B21-B11 );
9:  MT7=Strassen( A21+A22, B11 );

10 %

11:  Cl1=M1+M2-M4+M6;

12:  C12=M4+Mb5;

13:  C21=M6+4+MT;

14 C22=M2-M3+M5-MT7;

First Winograd multiplication:

[A, B] = maxsearchcmp( @Winograd, @nmult,...

AI, BI, Qerlvs2, ’mds’, 1.0e7 )
The chosen error measuring number is er.
The error measuring number at the initial data: 2.48485
There are no constraints
The stopping value is: 1e+007
The choosen search method is MULTIDIRECTIONAL SEARCH method.
Starting the maximizer...

Column 1 gives the number of evaluatiomns,

column 2 gives the current error measuring value.

160 5.100921e+000

320 5.907460e+001
480 2.411424e+002
640 2.289525e+003
800 7.975595e+003
960 7.265662e+004

1120 2.546605e+005

1280 2.325295e+006

I'l'Tnstability located!!!

After 1396 evaluations the error measuring number: 1.046806e+007

The output matrices are
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Algorithm 16 Winograd’s recursive method

1:  function C=WStrassen(A,B)

2: [mk] = size( A);

3:  [Ln] =size( B );

4: assert( m == k , A must be a squere matrix!” );

5: assert( k ==1, B must be a squere matrix!’ );

6: assert( 1 ==n, ’A and B must be the same order!” );

70 k = uint32( m );

8: assert( bitand( k, k- 1 ) == 0, 'n must be the form of 2°k’ );

9 %

10: ifn ==

11: C=A*B;
12: return;

13:  end

14: d=n/2;

15: dl=d+ 1;
16:  All=A(1:d,1:d);
17 Al2=A(1:d,d1:n);
18:  A21=A(dl:n,1:d);
19:  A22=A(dlmn,dl:n);
200 %
21:  B11=B(1:d,1:d);
22:  Bl12=B(1:d,dl:n);
23:  B21=B(dl:n,1:d);
24:  B22=B(dl:n,d1:n);
25 %
26:  [C11,C12,021,022]=WStr2x2(A11,A12,A21,A22,B11,B12,B21,B22);
27:  C(1:d,1:d)=C11;
C(1:d,d1:n)=C12;
29: C(dlin,1:d)=C21;
C(d1mn,d1:n)=C22;
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Algorithm 17 Winograd variant of Strassen’s 2 x 2 matrix product

1: function [C11,C12,021,022]=WStr2x2(A11,A12,A21,A22,B11,B12,B21,B22)
2: % Winograd variant of Strassen 2 x 2 matrix product
3. S1=A21+A22:
4:  S2=S1-All,
5 S3=A11-A21;
6:  S4=A12-S2:
7. S5=B12-B11;
8:  S6=B22-S5;

9:  S7T=B22-B12;
10:  S8=S6-B21:
11: %
12:  M1=WStrassen( S2, S6 );
13:  M2=WStrassen( All, B11 );
14:  M3=WStrassen( A12, B21 );
15: M4=WStrassen( S3, S7 );
16:  M5=WStrassen( S1, S5 );
17:  M6=WStrassen( S4, B22 );
18:  M7=WStrassen( A22, S8 );
190 %
20:  T1=MI1+M2;
21:  T2=T1+M4;
22: %
23:  Cl1=M2+Ms3;
24:  C12=T1+M5+M6;
95 C21=T2-MT;
26:  C22=T2+M5:
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0.5806 0.5806 0.5806 0.5806

0.5806 0.5806 0.5806 0.5806

0.5806 0.5806 0.5806 0.5806

0.5806 0.5806 0.5806 0.5806

B =
1.0e+009 x*

4 .5555 0.0000 0.0000 0.0000
-3.0370 0.0000 0.0000 0.0000
-1.5185 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

The result shows the great instability of this method, which has been known
since the 70s.
Analysing Strassen’s algorithm, we obtained:

>> [A, B] = maxsearchcmp( @Strassen, @nmult,...
AI, BI, Q@erivs2, ’mds’, 1.0el0 )
The chosen error measuring number is er.

The error measuring number at the initial data: 9.46275
There are no constraints
The stopping value is: 1e+010

The choosen search method is MULTIDIRECTIONAL SEARCH method.
Starting the maximizer...

Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

160 1.460319e+001
320 4.830682e+001
480 1.215640e+002
640 2.706130e+002
800  4.342814e+002
960 1.672311e+003
1120  3.132267e+003
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1280 9.683686e+003
1440  1.456509e+004
1600  3.567706e+004
1760  4.432362e+005
1920  4.434299e+005
2080  4.443088e+005
2240  4.497564e+005
2400 4.735137e+005
2560 6.715336e+005
2720 1.404269e+006
2880  5.442865e+006
3040 1.978842e+007
3200  1.998272e+008
3360 5.313679e+008
3520  5.144812e+009

!'11Instability located!!!

After 3571 evaluations the error measuring number: 1.139389e+010

The maximizer stopped at the input matrices:

A =
1.0e+005 =*
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -0.0000
0.0000 0.0000 0.0000 4.0779
B =
1.0e+005 =*
1.4831 0.0000 0.0000 0.0000
-56.5611 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
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According to the result the method of Strassen has much worse stability prop-
erties then the standard matrix multiplication.
Testing Winograd’s recursive algorithm, we could find instability as well:

>> [A, B] = maxsearchcmp( @WStrassen, @nmult,...
AI, BI, Qerlvs2, ’mds’, 1.0el0 )
The chosen error measuring number is er.

The error measuring number at the initial data: 4.82675
There are no constraints
The stopping value is: 1e+010

The choosen search method is MULTIDIRECTIONAL SEARCH method.
Starting the maximizer...

Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

160  2.145500e+001
320  8.222295e+001
480  7.551987e+001
640 1.844033e+002
800  3.575004e+002
960  8.844130e+002
1120  1.522865e+003
1280  7.545635e+003
1440  9.260712e+003
1600  2.968749e+004
1760  5.642213e+004
1920 9.391043e+004
2080  4.484037e+005
2240  6.285645e+005
2400  5.545539e+005
2560 4.675970e+005
2720  3.825951e+006
2880 9.186001e+006
3040  1.219495e+007
3200  3.139133e+007
3360  3.983461e+007
3520  8.281908e+007
3680  1.748969e+008
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3840 6.305491e+008
4000  8.937694e+008
4160 3.681177e+009
4320 5.593516e+009
4480  7.274456e+009

!'11Instability located!!!

After 4543 evaluations the error measuring number: 1.011707e+010

The enormous value of the error measuring number was revealed at:

A =
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -0.0166  0.0000

-0.0000 0.0000 7.7561  8.4865

B =
3.0000 0.0000 -0.0000 0.0000
0.0000 3.0000 0.0000 -16.9706
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -0.0000

We have also compared the recursive algorithm of Winograd with Strassen’s
method:

>> [A, B] = maxsearchcmp( @WStrassen, @Strassen,...
AI, BI, Qerilvs2, ’mds’, 1.0el0 )
The chosen error measuring number is er.

The error measuring number at the initial data: 0.510079
There are no constraints

The stopping value is: 1e+010

The choosen search method is MULTIDIRECTIONAL SEARCH method.
Starting the maximizer...
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Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

160 1.283606e+000
320 2.531995e+001
480  9.834933e+001
640 8.074625e+002
800  2.873184e+003
960 2.777216e+004
1120 1.428901e+005
1280  2.184651e+005
1440  4.762304e+006
1600  1.642535e+007
1760 1.579126e+008
1920 1.323460e+008
2080 4.544618e+008

I'l'Tnstability located!!!

After 2144 evaluations the error measuring number: 1.010641e+010

The result shows that Winograd’s method has worse stability properties than
the algorithm of Strassen. The great value was found at:

A =
1.0e+010 x*
0.0000 0.0000 0.0000 0.0000
0.0000 0.9256 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 -2.5453 0.0000 0.0000
B =
1.0e+010 x*

0.0000 -0.0000 0.0000 3.9336
0.0000  0.0000 .0000  0.0000
0.0000 0.0000 0.0000 -2.3139

o
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0.0000 0.0000 0.0000 0.0000

According to the presented numerical results and many others not shown here
we can firmly establish the following conclusions:

1. The classical Winograd scalar product based matrix multiplication algorithm
of O (n?) operation cost is highly unstable in accordance with the common belief
but never justified in a formal way.

2. Both the Strassen and Winograd recursive matrix multiplication algorithms
of O (n?8) operation costs are numerically unstable.

3. The comparative testing indicates that Strassen’s algorithm has somewhat
better numerical stability than those of Winograd.

The obtained results support the common but disputed opinion that these fast
matrix multiplication methods are numerically unstable (for reference, see, e.g.
Higham [39]).
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9 Summary of the results

The numerical stability of computational algorithms is a very important issue. The
classic error analysis techniques very rarely give computationaly feasible results
for the practitioner. The classical numerical testing on selected test examples
often misleading depending on the selection and properties of the test problems.
This thesis joins a long line of research that aims an automatic error analysis
based on compiler techniques, the computational graph techniques, the automatic
differentiation techniqes, object oriented programming. Here the aim is that by
simply using the written program of an algorithm under consideration the average
or any other user can have a reliable estimate of the numerical stability without
blind test problem selection. This line of research was initiated by W. Miller, who
developed the most advanced program system and its theory. Although many
researcher developed similar or partly similar systems none of them achieved the
high level of Miller’s solution. Miller’s solution however was limited in use by the
computer technique of his age. In this thesis I analyzed, improved, upgraded and
reimplemented his method. The results of my research can summarized as follows.

Thesis 1

I replaced the minicompiler and its simplified programming language of the
Miller method to object oriented Matlab.

Thesis 2

Upon the bases of computer testing and theory I added two new optimization
methods to the system that improved the performance of the software.

Thesis 3

I reprogrammed and tested the system in Matlab. The new software provides
all the functionalities of the work by Miller and extends its applicability to such
numerical algorithms that were complicated or even impossible to analyze with
Miller’s method before. The analyzed numerical algorithm can be given in the
form of a Matlab m-file. Hence our software is easy to use. The program consists
of about 10000 lines and it is downloadable from the site

http://phd.uni-obuda.hu/images /milleranalyzer.zip

together with a detailed user guide.

Thesis 4

I applied the new Matlab version to investigate the numerical stability of some
ABS methods (implicit LU, Huang and its variants), and three fast matriz multi-
plication algorithms. The obtained results indicate numerical instability of various
scale and in the case of fast matrix multiplication algorithms give a definite yes for
the suspected numerical instability of these methods.
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