
Óbuda University

PhD Thesis

Data Compression and Data Management in

Stream and Batch Processing Environment

István Finta

Supervisor:

Dr. habil. Sándor Szénási

Doctoral School of Applied Informatics and

Applied Mathematics

Budapest, 2021

Final Examination Committee

The following served on the Examining Committee for this thesis.

Internal Opponent: Dr. habil. Edit Laufer, PhD

Óbuda University

External Opponent: Dr. Ladislav Végh, PhD
J. Selye University, Komárno, Slovakia

Chair: Prof. Dr. Aurél Galántai, DSc, professor emeritus

Óbuda University

Secretary: Dr. Gábor Kertész, PhD

Óbuda University

External Member: Prof. Dr. Róbert Fullér, DSc
University of Szeged

Internal Member: Dr. habil. Imre Felde, PhD

Óbuda University

Internal Member: Dr. habil Márta Takács, PhD

Óbuda University

ii

Declaration

I, the undersigned, István Finta, hereby state and declare that this Ph.D. thesis repre-
sents my own work and is the result of my own original research. I only used the sources
listed in the references. All parts taken from other works, either as word for word cita-
tion or rewritten keeping the original meaning, have been unambiguously marked, and
reference to the source was included.

Nyilatkozat

Aluĺırott Finta István kijelentem, hogy ez a doktori értekezés a saját munkámat mutatja
be, és a saját eredeti kutatásom eredménye. Csak a hivatkozásokban felsorolt forrásokat
használtam fel, minden más munkából származó rész, a szó szerinti, vagy az eredeti je-
lentést megtartó átiratok egyértelműen jelölve, és forráshivatkozva lettek.

iii

Kivonat

Az időről-időre megjelenő különféle enabler technológiák megkövetelik, hogy átgondoljuk
és szükség esetén átalaḱıtsuk az érintett felhasználási területen az addig elterjedt mérnöki
gyakorlatot. Az informatika és a számı́tástudományok területén az egyik ilyen enabler
technológia a Big data megjelenése volt: korábban soha nem látott mennyiségű adat
tárolása és feldolgozása vált lehetővé megfizethető áron és ésszerű(reasonable) időben.
Természetesen ebben az esetben is az általános technológiát/módszert testre kell szabni
az alkalmazó igényeihez és lehetőségeihez mérten. A Big data megjelenése közvetlenül az
elosztott rendszerű/szemléletű adatmenedzsmentre és az állományszervezésre (közvetve
pedig az adatokból információt kinyerő analitikai, AI/ML technológiákra) gyakorolta a
legnagyobb hatást.

A technológia a hatalmas adatmennyiségek ésszerű időn belüli kezelésén keresztül
lehetővé teszi, hogy igénytől és területtől függően nagyobb arányban kapjunk valós idejű
képet egy adott eseményről vagy megfigyelt rendszerről. A felhalmozott historikus ada-
tokra éṕıtett analitikai megoldásokkal pedig pontosabb előrejelzéseket (predikciókat) késźıt-
sünk. Azonban ehhez, a minél pontosabb előrejelzések érdekében, tiszta adatokra van
szükségünk. Másfelől, éppen az adatok hatalmas mennyisége miatt, sok esetben célszerű
az adatokat tömöŕıtve tárolni és/vagy mozgatni.

A disszertációm elején rövidem bemutatom/jellemzem a további vizsgálataim alapjául
szolgáló távközlési környezetet, amiben a hagyományos adatfeldolgozást egy proof-of-
concept keretében Big data alapúval helyetteśıtettem. Egyúttal kijelölöm azt a két
kutatási területet is, a veszteségmentes tömöŕıtés és a duplikáció kezelése, aminek az
eredményeit ebben a disszertációban foglaltam össze.

Az első kutatási területhez/téziscsoporthoz kapcsolódóan bemutatom az általam ki-
dolgozott veszteségmentes tömöŕıtési algoritmust, ahol a korábbi módszerekhez képest
számı́tási erőforrásra cserélem a tárolási erőforrást. Bebizonýıtom, hogy az algoritmus
helyesen működik. Az elvégzett elemzések alapján bemutatom a legjobb és legrosszabb
eseteket a tömöŕıtési arány, a feldolgozási idő és a felhasznált tárhely tekintetében. Ezeket
az eredményeket összehasonĺıtom az általam kidolgozott módszer alapjául szolgáló algorit-
mussal. Rámutatok a legrosszabb eset bemeneti mintázat meghatározásának nehézségére,
amivel kapcsolatban megfogalmazok egy szükséges feltételt.

A második téziscsoport során bevezetek egy stream processing környezetbe szánt,
sűrű kulcstérben hatékonyan működő, duplikáció szűrő adatszerkezetet, az IMBT-t. A
továbbiakban belátom az IMBT-ről, hogy helyesen működik. Bebizonýıtom, hogy az
adatszerkezet teljeśıtménye a kulcsok száma mellett azok statisztikai eloszlásától is függ.
Kezdetben speciális kulcs-eloszlásokra, eloszlás osztályokra, vonatkoztatva vezetek le zárt
képleteket a keresési költséggel kapcsolatban. Majd számszerűśıtem, hogy az IMBT
milyen feltételek mellett mekkora előnyt mutat más adatszerkezetekkel szemben. A
mátrixos ábrázolás során pedig olyan számı́tási eszközt mutatok be, amivel tetszőleges
kulcseloszlás modellezhető, ı́gy szimulácók seǵıtségével közeĺıtő képletek adhatók az IMBT
hatékonyságával kapcsolatban. Végül bemutatom az IMBT első verziós elosztott környezetű
működését.

iv

Abstract

The enabler technologies appear time-to-time and force us to re-think or even reshape
the status quo or the best practices applied in that particular area so far. One such kind
of enabler technology in the field of computer science and engineering was the Big data:
it made possible to store and process such a huge amount of data for affordable price and
within reasonable period of time like never before.

Obviously, the universal technologies and methods requires some sort/extent cus-
tomization based on the needs and the possibilities of the application field. The ap-
pearance of ’Big data’ had direct influence to the field of distributed systems, including
the scope of data management and data organization, and indirectly to field of data sci-
ence, which by now may extract the information from much larger data-sets, than ever
before.

The new technology makes it easier to get near realtime insight into an observed system
and/or to create more accurate predictions through the higher amount of accumulated
historical data, based on the need of the given application area. However, for higher
accuracy the clean data is essential. Additionally, due to the enormous amount of raw
data, it is reasonable to apply some sort of compression method during the storage and/or
transmission of the data.

In the course of the introduction of this dissertation I briefly characterize the telecom-
munication environment, in which the traditional data processing and pipeline had to be
replaced with Big data based technologies as a proof-of-concept. At the same time I de-
lineate those two research areas, the lossless data compression and duplication handling,
which are in the scope of this dissertation.

In the first theses-group I introduce a lossless data compression algorithm, where the
memory resources had been replaced by computation resources. I prove that the algorithm
works correctly. Based on the analyses I reveal the best and worst cases in terms of
compression ratio, processing time and memory need. I compare these results with the
initial algorithm, from which my idea was derived. Then I point out to the difficulty of the
determination of the worst case input pattern, relating to which I determine a required
condition.

In the second thesis-group I introduce a data structure, the IMBT which is meant to
be used as an efficient filter in a stream processing environment and performs efficiently
in case of dense key-space. Then I prove that the IMBT works correctly. I point out
that the performance of the data structure, next to the number of keys is a function of
their distribution as well. Assuming special key distributions I introduce closed formu-
las which work correctly in the context of the given distributions. Then, based on the
formulas I quantify the advantages/disadvantages of the IMBT, that is, I can formulate
distribution dependent conditions. In order to be able to model arbitrary distribution
in a computationally convenient way I introduce the matrix representation: through fast
mass-simulations well fitting formulas can be gained. Finally I show the operations of the
data structure in distributed environment.

v

Acknowledgements

I would like to thank to my manager, Lóránt Farkas for the trigger, and my supervisors
Sándor Szénási and Szabolcs Sergyán for their continuous support during my way. Nokia
Bell Labs and Óbuda University always provided the vibrating and inspiring environment
and the challenging tasks as well.

vi

Dedication

I dedicate this work to my family.

vii

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Efficient Filtering . 3

1.2 Compression . 4

1.3 Goal of the Research . 5

2 Virtual Dictionary Extension 6

2.1 Background – LZW Compression . 6

2.1.1 LZW Encoding . 6

2.1.2 LZW Decoding . 7

2.1.3 LZW, LZMW and LZAP Problems 7

2.2 Virtual Dictionary Extension(VDE) . 7

2.2.1 Linear Growth Distance Composition Rule 8

2.2.2 Linear Growth Distance Encoding 9

2.2.3 Linear Growth Distance Decoding 10

2.3 Complexities . 11

2.3.1 Encoding Space Complexity . 11

2.3.2 Compression Ratio . 17

2.3.3 Encoding Time Complexities . 21

2.4 Quantity Analysis on the Chaining of Repetition Free Words Considering
the VDE Composition Rule . 24

2.4.1 Terms and the Formal Definition of the Goal 24

2.4.2 Quantity Analysis of Primary Words Influenced by Virtual Words . 26

viii

3 Interval Merging Binary Tree 32

3.1 Problem . 33

3.2 Methodology . 34

3.2.1 Concept of the data structure . 34

3.2.2 Data Structure for Interval Merging 37

3.3 State-space analysis . 38

3.3.1 Inteval State-space . 39

3.3.2 Traversal Strategy Based Weight Classes 41

3.3.3 Bipartite Graphs and Combination Tables on the modeling of IMBT
State Space . 42

3.4 Arrangements Related Conditions, Theorems, and Equations 46

3.4.1 Permanent Gaps . 47

3.4.2 Temporary Gaps . 50

3.5 Arbitrary Distribution - The Matrix Representation 56

3.5.1 The Matrix Representation . 58

3.5.2 Model Refinements . 62

3.5.3 Experimentation results . 64

3.6 Packet De-duplication in Distributed Environment 67

3.6.1 Synchronization Methods . 68

3.6.2 Scaling . 72

4 Conclusion - Theses 76

4.1 Theses Group - Lossless Data Compression 76

4.1.1 Thesis - VDE Compression Method 76

4.1.2 Thesis - VDE Analysis . 76

4.2 Theses Group - Data Structures and Data Management 78

4.2.1 Thesis - Interval Merging Binary Tree 78

4.2.2 Thesis - IMBT State Space . 78

4.2.3 Thesis - IMBT Special Conditions 79

4.2.4 Thesis - IMBT Matrix Representation and an Equilibrium Condition 80

4.2.5 Thesis - IMBT in Distributed Environment 80

5 Applicability of the Results 81

References 82

APPENDICES 88

ix

A VDE Pseudo Code 89

A.1 Encoding - Java Like . 89

A.2 Decoding - Java Like . 92

B IMBT Search, Insert and Remove pseudo codes 96

B.1 Search . 96

B.2 Insert . 96

B.3 Remove . 99

x

List of Figures

1.1 Meters with emitted measurement reports 1

1.2 Traditional data pipeline in telco environment 2

1.3 NoSQL replacement . 3

2.1 Dependencies and relations between the statistical feature of the data to
be encoded, the achievable compression ratio and the space and time com-
plexities. 11

2.2 capacity vs size in case of LZW . 12

2.3 capacity vs size in case of VDE-LGD . 14

2.4 LZW non uniquely decodable representation need [bit] 17

2.5 LZW entry level compression ratio . 18

2.6 VDE theoretical expansion. Vertical axis represents the length of the stored
strings in bytes. Horizontal axis represents the indices, the dark columns
sign the position associated primary entries. 20

2.7 VDE theoretical entry level compression. Vertical axis represents the com-
pression ratio. Horizontal axis represents the indices. 21

2.8 Implicit dependency up to four characters long primary words. Numbers
greater than ’1’ represent the primary words. Numbers marked with ’1’
represent the presence of virtual words. Green squares are the envelopes
of the direct effect of the homogeneous concatenations of q characters long
words. 26

3.1 Naive approach: the storage need is linearly proportional to all the keys
regarding which duplication-free storage should be guaranteed. 34

3.2 The evolution in time of the IMBT based representation 38

3.3 IMBT interval evolving when no direct neighbor exists. In the figure N
represents the T time as well. By looking to the figure from the right side,
the remaining axes display a histogram of the intervals in different moments. 39

3.4 IMBT interval evolving when the keys are subsequent 40

3.5 IMBT interval evolving when there are both neighbour and stand alone keys 40

3.6 IMBT weight classes caused by the traversal strategy 41

3.7 G(I,W), where |I| = |W | = 3 and n = 4 . 44

xi

3.8 Simplified adjacency matrix of G(I,W) . 44

3.9 G(I,W) simplified adjacency matrix transformation to domain representation 45

3.10 G(I,W) examples with domain representation. 45

3.11 Linked list degenerated IMBT and three associated contingency tables. . . 48

3.12 Completely balanced IMBT and three associated contingency tables. . . . 49

3.13 The linked list degenerated IMBT with heavy nodes. 52

3.14 The associated contingency tables of linked list degenerated IMBT with
heavy nodes. 52

3.15 The contingency tables of IMBT where all the interval lengths are different. 56

3.16 IMBT coloured distribution of traversal related weights 56

3.17 Binomial distribution of the traversal related weights in IMBT 57

3.18 a) IMBT balancing imperfection in incremental environment. b) Supple-
mented IMBT for equivalent numerical simulations 63

3.19 Node cardinality and the cost of search as a function of the base of the
geometric progression. Darker areas indicate higher search operation cost.
The lighter numbers indicate more nodes 65

3.20 Number of nodes and cost of search for geometric progression with a) base
= 1.2 b) base = 3.2 and c) base = 6 . 66

3.21 Circulating the sync IMBT for Synchronization Purposes 69

3.22 IMBT Cluster Based Space Scale Out a)
Initial Cluster b) Duplicated Cluster b.1) First the Immutable Ci is queried
b.2) Then the Mutable C∗i is queried. 73

3.23 IMBT Cluster Based Space Scale Out a)
Parallel Queries Against the Immutable IMBTs b) Then Query Against the
Mutable IMBT. 74

3.24 IMBT Increasing Number of Replicas per Ci to Handle the Increased In-
coming Intensity. 75

4.1 Virtual word example . 77

4.2 Parameterized VDE-LGD method, where LZW is identical to LGD=0 pa-
rameter. 78

4.3 Interval Merging Binary Tree (IMBT) number of keys increasing and the
interval evolving while the number of nodes is constant. 79

4.4 Balanced IMBT, temporary gaps only, O(1) time complexity. The width
of the blue stripe depends on the shuffling of the keys. 80

xii

List of Tables

3.1 Distribution of weight classes in case of the IMBT is completely balanced.
The Fig.3.6 snapshot is marked with bold. 42

3.2 Fibonacci sequences in the cumulated weight classes 42

3.3 Comparison of Formula (3.11b) and Matrix based computations 64

xiii

Chapter 1

Introduction

Consider an environment where the group of distributed measuring instruments, let’s
say k instances (M1,M2, ...Mk), emit their measurement reports RMi (Fig. 1.1). Each
instrument has own unique identity. My goal is to collect, normalize and transport of
these measurement reports, along with guaranteed duplication filtering and high-speed
(near real-time) processing.

Thermometers of the national weather service might be an example of endpoints for
such a system.

Figure 1.1: Meters with emitted measurement reports

Regarding monitoring systems it is a natural expectation to get real-time insight about
the investigated system. However, the size and complexity of the system under investiga-
tion, the sort of the collected data, the influence of the measurement type to the observed
system and several other factors highly influence if which extent the above expectation
can be fulfilled.

In info-communication networks two types of reports are generated about the events
in the network nodes: periodic interval emitted (periodic timing based) synchronous and
event driven asynchronous reports. The locally generated reports has to be transmit-
ted into the permanent storage systems and has to be prepared for post-processing. It
is essential to consider this kind of distribution during observation and data collection
regarding networked systems.

Until the first half of the ’10, in accordance with the regulatory, the dominant data
pipeline based on batch processing and made available both the raw and several months
aggregated data/KPIs with significant delay (Fig. 1.2). Due to technological and econom-
ical reasons the real-time available information, expressed in the percent of the totally

1

observed data, was marginal. That is, the fine-tuning of the parameters of a network
mostly based on historical data. The accuracy of error prediction was also limited by the
batch processing caused delay.

Figure 1.2: Traditional data pipeline in telco environment

The higher percentage of real-time data processing from the second half of ’00 might
happened due to the appearance of the enabler technologies, which is called Big data
nowadays: by that time the research results from both the academia and the internet
tech company sides made possible to store and process enormous amount of data. At
that scale the Map-Reduce [2] (from Google, a batch processing programming paradigm),
Google File System (-GFS) [3], the Hadoop Distributed File System [4] and MAPR [5]
were among the pioneers. On the other hand the emerging cloud services (with the help of
which the resources usage can theoretically always be kept close to the optimal) were also
required faster and more accurate measurement data processing for proper functionality.

The rapidly spreading of the social media platforms implied that the backend needed
to be able to manage in a very short period of time the suddenly appearing several ten-
or hundred millions uploaded photos and posts. In the near real-time data processing
technologies Twitter was one of the pioneers by the in-house developed STORM [6] stream
processing framework at the beginning of ’10. Storm utilized ZeroMQ [7], NETTY [8],
RABBIT MQ [9] or KAFKA [10] as a lower level messaging services. At that time
Google Millwheel [11], LinkedIn Samza [12] or UC Berkley Spark [13] also considered as
determinative streaming frameworks.

For freshly founded companies implementing their relevant parts of the business model
in Java, Clojure or Python to conform the above Big data technologies is not mean a prob-
lem. However, for most of the existing companies SQL is the de-facto standard in the field
of business processes. In order to be able to fit the Big data systems, which are running on
cheap hardware, to the existing SQL based/supported business processes the upward com-
patible middlewares appeared, like HBASE [14] or HIVE [15]. These middlewares are able
to translate the SQL queries to MapReduce jobs, for instance. Other data base examples,

2

which operate in near real-time environments: Cassandra [16], CouchDB [17], VoltDB
[18]. Additionally, the proper functioning of these distributed systems require such mon-
itoring systems and rutins, which provide the continuous operation, fault-tolerance, etc.,
like ZOOKEEPER [19], GANGLIA [20].

In the meantime the LAMBDA architecture [21] concept also appeared, which is a
mixture of the batch and stream processing paradigms. These architectures might not be
the fastest ones, however, due to the presence of permanent storage (through the batch
processing side) their resilience against data loss is quite high.

1.1 Efficient Filtering

Earlier I participated in an industrial research project, which aimed the investigation of
the applicability of Big data technologies in telecommunication industry. The main drivers
behind the project were the followings: first is to seek for alternatives compared to vendor
locked traditional relational data bases, replacing them with theoretically cheaper, open-
source NoSQL technologies, Fig. 1.3. Second, is to increase the real-time processing ratio
of measurements data.

Figure 1.3: NoSQL replacement

During my job I had to prepare a kind of prototype data pipeline, which ensures the
duplication free storage in the persistent file system (HDFS), independently if type of
duplication is external or internal, origins due to some sort of re-transmission. Other-
wise the duplication makes dirty the inherently clean data, and as a result distorts the
derivative statistics or cause extra effort and cost during the late cleaning. In order to
keep the raw data clean during the ETL process I have investigated several traditional or
the previously mentioned in-memory DBs. However, none of them could meet with the
performance expectation next to the external communication costs. Therefore I paid my
attention towards built-in abstract data structures, like SET and MAP, provided by the
Java Collections Framework (JCF) [22]. Behind these abstractions the models are mostly
some sort Binary Search Tree [23], [24] (AVL-tree [25] [26] [27], RB-tree [28], etc.) or a
hash table [24]. Since the prepared pipeline was modular by design, I could examine the

3

application of other data structures as well, like B-tree [29] [30], (a,b)-Tree [33], Interval-
Tree [34] [35] [36]. Then I have examined the application of stand-alone layers for filtering
purposes, like Bloomfilter [39] or Chord [61].

The problem with the above implementations were either the filtering was not accurate,
or the space complexity was linearly proportional with keys processed so far. Therefore,
always could be found such long operational period of time, when the oldest keys had to
be removed from the filter so that let enough space for the new keys. With this strategy
either the loading of older keys were limited,or let the presence of duplication in case of
older keys.

From processing point of view the performance degradation appeared gradually in
logarithmic manner, instead of a sharp decrease, along with the increasing number of
keys.

The hash tables performed with the expected O(1) time complexity up to their preset
capacity. Then the effect of ’re-hashing’ decreased the performance of the pipeline with
such extent, that so called SWAP-ing took place and the pipeline collapsed, actually.

Therefore my goal was to work out such a (that kind of) filtering mechanism, which is
far more memory-friendly than the earlier solutions, but still could be described/characterized
with O(1) time-complexity. So, in this very special case I have worked out unique sequen-
tial numbering method which, based on a computation, always associates the identical
sequence number to the identical data, independently from the entry point of the data.
The replacement of mnemonic identities by unique sequence numbers made possible that
in the stream processing framework, which acted as a high speed filter as well next to
ETL purposes, only the efficient filtering of the sequence numbers had to be implemented.

1.2 Compression

Another scope of my research related to the efficient storage of the individually n-times
KBytes measurement data, since both the one-by-one transmission and storage of the
inherently small sized files could significantly reduced the efficiency of Big data file sys-
tems, where the block size is typically equal or greater than 64 MBytes(!). The previously
described problem is called ’small file problem’ [40], [41], [42] in the literature. To avoid
the problem several methods had been worked out, mostly with embedding of small files
into so called container files, like Sequence or Map files [40]. Since the daily generated new
data exceeds the n*10 GBytes even in an average sized mobile network and, in accordance
with the regulatory in Europe, this data have to be stored at least for two years, I had to
examine the application of lossless data compression algorithms, like LZ77 [43], [44], [46],
LZ78 [47], LZW [48] [51] and LZAP [44].

Access pattern is such an important parameter [40] which predicts both the frequency
and the access type to the stored data on some basis. The measurement files are actually
immutable ones, therefore the expected access pattern in this case is WRITE-ONCE–
READ-MANY-TIMES. It is worth to consider this information during the selection and
application of compression methods as well, since both the encoding and decoding time
complexities may be highly optimized with the properly selected algorithms.

Access pattern driven compression is so seriously/strictly handled by Google that in
their own invented compression method, ’brotli’ [52], the coders work from a pre-defined,

4

pre-weighted, non-volatile static dictionary, which comprises 13K entries approximately.
In web environment this approach significantly boosts the procedure. Prior to brotli, in
2011 Google introduced another compression method, which is soon become widespread
in Big data technologies the so called Snappy compression [53].

Next to Google, also Facebook introduced their own compression method, Zstandard
[54] [55], in 2016, which is a mule of LZSS and Huffman encoding [44]. Zstandard focuses
on the decoding side performance, next to the best available compression ratio.

First, I reviewed the above methods and algorithms, then I came up with my cus-
tomized relatively fast, easy re-weight, memory-friendly, LZW based virtual dictionary
extension solution. This customized method is aimed to be asymptotically optimal next
to show excellent compression ratio from solid compression point of view, where the data
files (the inputs for solid compression) can be characterized with relatively many and rel-
atively long recurring identical patterns at the beginning, like the measurement headers.

1.3 Goal of the Research

In case of efficient filtering the goal of my research was to work out the concept of the
required data structure. Next to the initial theoretical examinations I have built the pro-
totype as well and investigated the behavior of the IMBT under different circumstances,
with the help of the simulation and experimental results. The experimental results lead
to novel theoretical relations between incoming key distributions and the advantage of
IMBT compared to other data structures.

In case of customized compression the goal of my research was to work out the de-
tailed virtual dictionary extension method, both the encoding and the decoding side and
determine the main theoretical relations. Parallel to the theoretical work I implemented
the prototype and tested the theory through experimental results.

In the following first the Virtual Dictionary Extension, then the efficient filtering
related research and outcomes will be presented.

5

Chapter 2

Virtual Dictionary Extension

Lossless data compression is an important topic from both data transmission and stor-
age point of view. A well chosen data compression technique can largely reduce the
required throughput or storage need. As a tradeoff, data compression always requires
some computing resources which are in correlation with the achieved compression rate.
For a particular use case the best suitable compression method depends on the statistical
characteristics of the data, the applied computing paradigm and the data access pattern.

2.1 Background – LZW Compression

2.1.1 LZW Encoding

During encoding LZW maintains a dictionary in which the entries are divided into two
parts. The size and content of the first part, which is mostly called initial part, is im-
mutable and contains all the individual symbols from a pre-defined alphabet with a se-
quence number associated with the position. The second part is a dynamic one and
contains at least two symbols long words over the alphabet. The numbering of the dy-
namic part begins from the end of the initial part without overlapping. Supposing that
our alphabet is the set of ASCII characters and we have an input text to be compressed,
the dynamic part of the dictionary is built up according to the following rule, [48], [44]:

• The encoder builds words (Wb) from the input text character by character and looks
up Wb in the dictionary.

• The encoder builds Wb until it is not available in the dictionary, or when the encoder
reaches the end of the input text. When the Wb is not in the dictionary this means
that Wb is one symbol longer than the previous longest character sequence with the
same prefix Wcm. Wcm is also called current match.

• Wb will be written into the first empty position of the dynamic part of the dictionary.
Alongside the encoder issues the sequence number of Wcm.

• Then the encoder forms a new Wnb from the last character of Wb.

• Then swaps Wb with Wnb, drops Wnb and starts a new cycle.

6

When the dictionary gets full the one of the most widely accepted strategy is that the
dynamic part flushed out and rebuilt periodically to stay adaptive.

2.1.2 LZW Decoding

In case of decoding the decoder has to have the same initial dictionary. The decoder
reads the issued sequence numbers. Based on the numbers and the static part of the
dictionary the decoder is able to rebuild the dynamic entries. This information is enough
to reconstruct the input text, [48], [44].

2.1.3 LZW, LZMW and LZAP Problems

As it is visible from section 2.1.1 the dictionary is built quite slowly. This means that
the encoder can increase the stored entries by one character compared to the previously
longest prefixes. In case when a relatively long substring occurs quite frequently, due to
the dictionary construction strategy, the full coverage of that particular substring may
require at least as many entries as long the substring itself is(Problem 1/P1).
The situation is even worse if two frequently occurring sub-strings(W1,W2) differ from
each other only in the first character. In this case, due to the dictionary construction, full
coverage of W1 and W2 may require twice as much entries in the dictionary as if W1 and
W2 were identical (Problem 2/P2).
Besides the above two scenarios supposing that the encoder is in the middle of the encoding
of an input text and there is a recurring substring W1, the encoder will find that particular
substring in its dictionary (and therefore compress the input text efficiently) only if it can
start the word parsing from exactly the same character as did it in previous case. It
means that an offset between the previous and actual substring parsing may significantly
decrease the quality of the compression (Problem 3/P3).

Let us define previous match as the preceeding entry in the dictionary relative to
current match.
LZMW(MW:Miller, Wegman) [44] tries to increase the hit ratio by inserting into the
dictionary the concatenation of the previous match and current match. The main problem
with this method is that it consumes the entries faster than LZW. Other problem is that
encoding side time complexity is high compared to LZW.
LZAP(AP:All Prefixes)[44] is a derivative of LZMW and tries to resolve P1, P2 and
P3 according to the following: during dictionary building besides the full concatenation
of previous match and current match the extended previous matches are also stored.
Extensions here mean all prefixes of the current match. That is why one match will occupy
as many entries in the dictionary as many symbols reside in the current match. This
approach can significantly increase the hit ratio, however it is too greedy from memory
consumption point of view.

2.2 Virtual Dictionary Extension(VDE)

The goal is to eliminate somehow the memory consumption problem of LZMW or LZAP.
To solve this problem a new approach will be introduced which I will call Virtual Dic-
tionary Extension(VDE). VDE from processing point of view resides between LZMW

7

and LZAP. With Virtual Dictionary Extension we will be able to increase the hit ratio
compared to LZW, but this method will require only as many entries as LZW.

To make it possible in the dictionary we have to distinguish the positions of the entries
from their indexes/sequence numbers. In case of LZW, LZMW or LZAP the position of an
entry is identical with its index. In those cases the distance between two adjacent entries
is one. In the followings dictionary entries will be called primary entries and will be
denoted by p. The idea is that in case of VDE the distance between two adjacent primary
entries is one in terms of position but can be greater in terms of indexes. The position
associated indexes will be denoted by ip. The indexes which fall between two ip will be
denoted by iv(virtual index). Virtual indexes, without position in the dictionary, refer to
composite or virtual entries. That is why dictionary extension is called virtual. During
encoding the indexes will be emitted instead of positions(as happened in case of LZW,
LZMW or LZAP). The applied composition rule must consider that at decoding side we
have to be able to reproduce the original input from the mixture of position associated
and virtual indexes. Apart from this boundary condition we can choose any composition
rule which fits to our problem domain. In the followings I will show the Linear Growth
Distance(LGD) composition rule.

2.2.1 Linear Growth Distance Composition Rule

As previously mentioned the dictionary has an initial part and a dynamic part. Supposing
that we have an alphabet which resides in the initial part of the dictionary. The initial
part is immutable therefore in the followings we can consider it as a constant offset from
both position and index point of view. To make the introduction of VDE-LGD encoding
easier we ignore the initial part caused offset and focus only on the usage of dynamic part.
In case of LGD we can count the position associated indexes according to the following
formula:

ip =
p(p+ 1)

2
, (2.1)

which is nothing else but the triangular number [45]. Considering the linearly growing
number of iv between ip, which is always equal with the number of preceding primary
entries, with iv we can refer to concatenations which are generated from words of previ-
ous primary positions. With this technique we can increase the hit ratio with identical
number of entries.

Let’s see an example: the text to be compressed is let’s say: ”asdfasdr”. Based on
the composition rule the following words will be available:

0 - as, a
1 - sd, s
2 - asd
3 - df, d
4 - sdf
5 - asdf
6 - fa, f

8

7 - dfa
8 - sdfa
9 - asdfa
10 - asdr, asd
11 - fasdr
12 - dfasdr
13 - sdfasdr
14 - asdfasdr

The primary entries are marked with bold. The emitted symbol itself is displayed
after the comma instead of the index of the emitted symbol.

In case of any constraint regarding the maximum number of virtual words between
two subsequent primary words is denoted by VDE-LGD(max constraint). VDE-LGD or
VDE-LGD(∞) is applied otherwise.

2.2.2 Linear Growth Distance Encoding

To explain encoding let us first compare the content of LZW(left column) and VDE-
LGD(right column) dictionaries and the emitted indexes based on the previous example:

0 - as, a 0 - as, a → ip
1 - sd, s 1 - sd, s → ip
2 - df, d 3 - df, d → ip
3 - fa, f 6 - fa, f → ip
4 - asd, as 10 - asdr, asd → iv(= 2)

To determine the indexes let’s consider the bold ”asdr” row. In the legacy case ”as”
would be the current match. I propose to start examine after the ”as”(marked by italic)
match the successive primary entry without the first character, which is in this case ”sd”
without ”s”, that is ”d”(marked by italic). In case of matching one takes the next pri-
mary entry, ”df”, and performs the previously mentioned examination again, ”f”(marked
by underline) in this case. However the next symbol in the input text to be encoded is
”r”, so the extension process stops here. When the last match has been reached it counts
the Number of Hops(NoH) and maintains the first match. The index to be sent out will
be computed according to the following rule:

– if the first match is the last match, so there is no subsequent match, the index is an
ip type and counted based on the dictionary position,

– if the first match differs from the last match the index to be sent is computed ac-
cording to this:

iv = ip + (pl − pf),

where

9

– pl is the position of last match, and

– pf is the position of first match.

The original LZW algorithm requires the following modifications:

– First I have to introduce a new, so called, buffer area to be able to simulate and
handle the subsequent word comparison failures. This solution makes it possible to
continue the process in the middle of the ”next entry”, in case of comparison failure,
without information loss.

– The second difference is that I have to distinguish from searching point of view the
first match from subsequent matching(s).

– The third difference is that it has to differentiate the initial part of the dictionary
from the dynamic part. In case of LGD virtual extension will be applied exclusively
to the dynamic part of the dictionary.

2.2.3 Linear Growth Distance Decoding

At decoding side the reconstruction of the input works like the following: when an index
arrives - denoted by ia - the algorithm examines if it is a primary entry or not. To perform
this the following formula is used:

pc =
−1 +

√
1 + 8ia

2
. (2.2)

From here there are two main scenarios possible:

– In case when the pc is an integer without remaining value this means that the
dictionary entry searched for is a primary entry. It is possible to look up the entry
from the dictionary directly.

– Otherwise take the floor function of the computed position, signed pf . This will
provide last primary entry of match. Then compute the base index from the position,
signed with ib, with the following formula:

ib =
pf (pf + 1)

2
. (2.3)

Then with a simple subtraction it is easy to define the NoH = ia − ib . With
this information step back NoH and start to generate the derivative entry. From
here, if the word is computed, the process continues as in case of the original LZW
algorithm.

There is only a small difference compared to the original decoder method when the ref-
erenced primary entry still not present: it only can takes place when it depends on the
previous primary entry. To compute the missing reference entry simply step back with
NoH, which is practically 1 in this case. Then take the first character of that primary
entry as an addition to the previously used entry, no matter if it is a derivative or primary
one. Then this combined entry will be the missing referenced entry that have to be written
into the dictionary. From here every step takes place according to has been written before.

The section relates to Thesis 4.1.1.

10

2.3 Complexities

Since the main goal of a compression method is to reduce the size of the input data, the
theoretically available compression ratio is the most important factor. However, based on
the usage pattern and constraints like computing or memory resource limitations, other
factors also have to be considered. These factors are:

– encoding time complexity(encoding speed),

– encoding space complexity(encoding memory need),

– decoding time complexity(decoding speed),

– decoding space complexity(decoding memory need) and

– life-cycle of the compressed data(part of statistical characteristic).

These factors mostly depending on each other. In Fig. 2.1 the high level dependency is
visualized.

Figure 2.1: Dependencies and relations between the statistical feature of the data to be en-
coded, the achievable compression ratio and the space and time complexities.

There are existing analysis regarding LZ family like [46], [50] and [49], which are handling
the question in general manner. However in the following the focus is exclusively on the
boundary values comparison from both compression ratio, processing speed and memory
need point of view.

2.3.1 Encoding Space Complexity

In this section the memory need of VDE-LGD will be analysed. To be able to perform
this the capacity of the dictionary has to be distinguished from the actual size. The

11

relation between capacity and size is: size ≤ capacity. In this terminology size always
refers to the actually occupied bytes in the buffer during encoding or decoding, so it is a
dynamic descriptor. While capacity refers to the theoretically needed/achievable length
if the input pattern is the most memory demanding from dictionary composition point of
view, therefore it is a static descriptor. So the actual size always depends on the actually
processed input pattern, while capacity is that size which is required if the most memory
demanding input pattern would be processed.

LZW Encoding Capacity

In Fig.2.2 the encoding of the previous text is visible with LZW algorithm. Supposing
that the initial alphabet is the ASCII table. Therefore the dynamic part of the dictionary
starts from 256. Since in case of LZW the position is equal with the index the header
sequence is continuous. Based on the dictionary composition rule the actually occupied
space(the size) is marked by continuous line.

Figure 2.2: capacity vs size in case of LZW

As it is visible from the figure the occupied size is strongly pattern dependent. The
dotted line marks the capacity of the dictionary. The worst case scenario from memory
consumption point of view takes place when the input pattern, due to the construction
of the dictionary, always makes possible to reuse the longest previously stored entry
during encoding of the next portion from the input data. The pattern which meets these
requirements is eg. the: ”aaaaaaa...”. Obviously this is a very rare pattern in case of
compression, but gives us a baseline (this is the reference of a so called distortion factor).
Naturally this pattern could be compressed by another representation like n× c, where c
is the repeating character and n is the repetition factor.

12

Now let’s examine the capacity need of LZW. To be able to compare the growth rate of
LZW to VDE a notation will be introduced below which is trivial in case of LZW, however
will not in case of VDE. If the data to be compressed is a string of same characters and
the initial alphabet resides from entry 0 to 255, then the newly attached characters (ac)
can be expressed with the following formula:

acp = acp−1 + 1 | p > 255, (2.4)

ac255 = 0.
Entry (or word) level memory need is:

emp = 1 + acp | p > 255. (2.5)

Finally the position dependent aggregated memory need can be expressed by the following
formula:

CLZW (p) = 255 +
(p− 254)(p− 253)

2
| p > 255. (2.6)

As it is visible from the formula the capacity need is depending on the number of allowed
dynamic entries. The growth rate of the entries and the aggregated memory need is
O(p), O(p2) respectively.
Let the length of the initial alphabet is Sin. Then the previous formula turns into the
following one:

CLZW (p) = (Sin − 1) +
(p− (Sin − 2))(p− (Sin − 3))

2
(2.7)

VDE Encoding Capacity

Now the capacity need of VDE-LGD(∞) will be determined. In Fig. 2.3 the previous
example is visible as it is processed by VDE-LGD(∞). In the figure the upper number
sequence represents the positions, while secondary number sequence represents the posi-
tion associated primary indexes. Just like before the actually occupied size is marked by
continuous line. The way as the dictionary construction allows that the longest entry is
more than one character longer than the second longest entry is clearly visible at position
271: The length of the longest stored entry is ten characters, while the second longest
entries are two characters long.
The worst case scenario from memory consumption point of view takes place when the
input pattern, due to the construction of the dictionary, makes possible the reuse of all the
previously stored entries to encode the next portion from the input data. The prerequisite
of this behaviour is that the first primary entry is not prefix of the second primary entry
parallel the second primary entry is not prefix of the third primary entry. However both
the lower positioned odd and even entries are prefixes of the higher positioned odd and
even entries respectively. The pattern which meets these requirements is the ”ababab...”
alternating character sequence.

Let’s see the entries if the algorithm is fed with the ”ababab...” input. To make cal-
culations easier the numbering of the dynamic part as will be shifted as the first position
will be the zero.

13

Figure 2.3: capacity vs size in case of VDE-LGD

0 0 1 a b
1 1 1 b a
2 3 3 a bab
3 6 5 b ababa
4 10 11 a bababababab
5 15 21 b ababababababababababa
6 21 43 a bab

The first column is the position, second is the associated primary index and the third
column is the number of newly attached characters from the input. The recursive formula
to express the position dependent newly attached (ac) characters is:

acp = (2× acp−1) + (−1)p, (2.8)

if ac0 = 1 and p = 1, 2, 3, In Fig.2.3 the dotted line rectangles contain numbers which
greater by one than the numbers from the previous recursive formula. The results of the
recursive formula are equal with the increments, while the numbers from the figure are
equal by the occupied characters and due to the contribution of the dictionary the ending
characters are stored twice since those are the starting ones of the succeeding entries. To
be able to make calculations let’s explicate the recursive formula:

acp = 2× ((2× acp−2) + (−1)p−1) + (−1)p, (2.9)

acp = 2× ((2× ((2× acp−3) + (−1)p−2) + (−1)p−1) + (−1)p, (2.10)

14

which leads to the following series:

2p − 2p−1 + 2p−2 − 2p−3 + 2p−4 − 2p−5 + ... (2.11)

This series can be expressed with formula:

p∑
i=0

2p−i(−1)i (2.12)

From the formulas above we can express the capacity need of primary entries and the
aggregated dictionary as well:

emp = 1 + acp = 1 +

p∑
i=0

2p−i(−1)i (2.13)

Clgd(p) = Sin + p+

p+1∑
i=0

2p−i(−1)i − (01+(−1)p+1

) (2.14)

From the formulas it is visible that both the entry and the aggregated level growth rate
is Clgd(p) = O(2p) in contrast of CLZW (p) = O(p2).

Least Memory Demanding Input Pattern

The least memory demanding input pattern is if the maximum length of the dynamic
entries can grow by one character if and only if previously all the variations are stored in
the dictionary from the preceding maximum length. The following example will expose
what does it mean in practice.
Let the initial part of the dictionary is the first four letters from the English alphabet a,b,c
and d. Then the following sequence of the letters will led to the least memory demanding
entries: ”aabacadbbcbdccdda”. This sequence will led to the following structure in the
dictionary (relative numbering):

01 - aa, 08-bb, 13-cc, 15-dd
02 - ab, 09-bc, 14-cd, 16-da
03 - ba, 10-cb,
04 - ac, 11-bd,
05 - ca, 12-dc,
06 - ad,
07 - db,

Actually this is nothing else than all the pairs from the initial alphabet, which is the
V r,2
n = n2 = 42 = 16. Here V refers to variation, n = Sin is the cardinality of the alphabet,
r in the upper index means that repetition is allowed and the number in the upper index
refer to the length of the word over the alphabet. Of course the sequence can be continued

15

with all triplets V r,3
Sin

and so on. The following formula expresses the aggregated number
of entries if all the words stored with maximum m length:

m∑
i=1

V r,i+1
Sin

. (2.15)

To construct the least memory demanding sequence it is not enough to generate the
increasing length variations: prefixes also must be avoided. In the following a construc-
tion method will be introduced over the previously shown four letters long alphabet. To
generate the appropriate triplets the pairs will be systematically extended. During exten-
sion the first letter from the alphabet will be inserted in the middle of the existing pairs.
Then the second letter from the alphabet and so on. The newly generated entries will
look like this:

17-a(a)a, 24-b(a)b, 29-c(a)c, 31-d(a)d
18-a(a)b, 25-b(a)c, 30-c(a)d, 32-d(a)a
19-b(a)a, 26-c(a)b,
20-a(a)c, 27-b(a)d,
21-c(a)a, 28-d(a)c,
22-a(a)d,
23-d(a)b,
33-a(b)a, 40-b(b)b, 45-c(b)c, 47-d(b)d
34-a(b)b, 41-b(b)c, 46-c(b)d, 48-d(b)a
35-b(b)a, 42-c(b)b,
...
65-a(d)a, 72-b(d)b, 77-c(d)c, 79-d(d)d
66-a(d)b, 73-b(d)c, 78-c(d)d, 80-d(d)a
67-b(d)a, 74-c(d)b,
68-a(d)c, 75-b(d)d,
69-c(d)a, 76-d(d)c,
70-a(d)d,
71-d(d)b,

In the entries above the newly inserted characters are marked with parenthesis. From
the entries the ”original” input can be generated by concatenating the entries one after
another with that constraint that during concatenation the first character of each entry
has to dropped except the first entry:

”aabacadbbcbdccdda||aaabaaacaaadababacabadacacadadaa|babbbabbbcbbbcbdbdba...
...|dadbdadcdadddbdbdcdbdddcdcddddda”

The double vertical line splits the different degree of variants. The single vertical lines
split the string according the extension letter within the same degree of variants.
The generation can be continued in the following way: Take all the triplets and insert the
first letter from the alphabet between the last and the last but one characters. Then the
same insertion should be performed with all the remained letter from the alphabet.

16

The method will produce the least memory demanding input for LZW in case of unlimited
number of entries and with some constraint can be applied to VDE as well.
Supposing that the initial alphabet is the extended ASCII table(256 characters), addi-
tionally the data to be encoded is the above created input string. Then the number of
possible pairs in the dictionary is: V r,2

Sin=256 = 65536.
Regarding LZW this means that during encoding the first 65536 characters all the ref-
erence will refer to the initial/static part of the dictionary with uniform distribution in
terms of frequency. In real implementations the number of entries are limited around
16000 entries due to space and time complexity constraint, so with the pairs only the
dictionary can be filled with pairs only.
It was mentioned earlier that with some constraint the generated input can be applied
to VDE as well. This constraint is the previously mentioned limited number of entries.
Since during pairs the prefix free words can be ensured, however when longer words are
generated the above method will result overflowing, which behaviour overrules the initial
condition that the dynamic entries can grow by one character if and only if previously all
the variations are stored in the dictionary. But this would require more than 64K primary
entries, which is not valid in actual implementations.

2.3.2 Compression Ratio

In this section the relation between the length of dictionary entries and the theoretically
achievable compression ratio will be exposed. First LZW will be examined then it will be
compared with VDE-LGD(∞).
These additional notations also will be used during the examinations: let St is the total
number of entries and Sd = St− Sin is the maximum number of dynamic entries. Denote
Rb = dlog2(St)e the required number of bits to represent the full dictionary.

LZW Compression Ratio

Supposing that the initial dictionary of LZW is the eight bits ASCII table. Let an
additional constraint that maximum 256 dynamic entries are allowed. This means that
the range from 0 to 511 has to be covered unique entry positions St = 512. The required
number of bits to be able to represent a particular entry is dlog2(n)e, where n is the
position of the entry. It is visible in Fig.2.4. However in practice the above number

Figure 2.4: LZW non uniquely decodable representation need [bit]

17

of bits do not ensure the unique decodability need. In this particular case Rb = 9.
Supposing that the input pattern is most memory demanding n× c type. Then the entry
level compression ratio can be determined. This is the division of the representation need
of the entry by the length of that particular entry as it is visible in Fig.2.5.

Figure 2.5: LZW entry level compression ratio

The importance of this figure is that it point out to the theoretically achievable lowest
compression ratio and the dynamic behaviour of the algorithm. With the given conditions
the lowest compression ratio is:

CRLZW =
Rb

dlog2(Sin)e(emSd
+ 1)

, (2.16)

where emSd
refers to the Sd

th dynamic entry, which is 256 in this case.
With term ”final match” that operation will be denoted when the algorithm find the
longest fitting entry from the dictionary to the next portion of the input data. During
encoding the first character the first match is the final match since only single characters
reside in the dictionary. As the dictionary growing probably several additional matches
will follow the first matches before the final matches (,otherwise the input is the sequence
of the letter from the alphabet with that length which is the size of the alphabet, or
the dictionary dynamic part is too small). Every final match is followed by a dictionary
identifier printout. Let the number of final matches is fm. With this special input pattern
during dictionary construction the compression ratio continuously get better. When the
dictionary full the final matches always refer to the last entry therefore the compression
ratio tends to:

lim
fm→∞

CRLZW (fm) =
Rb

dlog2(Sin)e(emSd
+ 1)

(2.17)

According to the formulas the highest memory usage can lead to the best compression
ratio. Of course there are techniques which can reduce the actual memory need but on
the other side those techniques increase the time complexity of the algorithm.

18

Now let the input data pattern is the least memory demanding one. In this case sup-
posing that the number of dynamic entries are limited between 1 and 65536, that is
1 <= Sd <= 65536. Due to the input during the construction of the dictionary always
the simple letters from the static part will be referred. Therefore the compression ratio
is the following during construction time:

CRLZW (1 <= fm <= Sd) =
Rb

dlog2(Sin)e
>= 1. (2.18)

If the maximum number of dynamic entries Sd = S2
in then

CRLZW (1 <= fm <= Sd) =
Rb

dlog2(Sin)e
=

=
dlog2(Sin + S2

in)e
dlog2(Sin)e

=
dlog2(Sin(1 + Sin))e
dlog2(Sin)e

=

=
dlog2(Sin) + log2(1 + Sin)e

dlog2(Sin)e
≈ 2.

(2.19)

Supposing that the number of dynamic entries tends to infinite. Due to the construction
of the input the dictionary, if the length of the words incremented by one character during
the processing of the portion of input the references always will refer to the words from the
previous range, where the words are one character shorter. However the representation
need Rb increased by one bit. Therefore the compression ratio is always greater than one.

VDE Compression Ratio

Now let’s see the same analysis of VDE-LGD. Let the initial dictionary is the eight bits
ASCII table again. The restriction for the number of primary entries is just like in the
previous case: Sd = 256. In contrast to LZW this mean the range from Sin : 0− 255 and
Sde : 256 − 33152 has to be covered, where Sde refers to the extended dynamic entries.
Therefore St = Sin+Sde. Choosing the previous representation type the required number
of bits is Rb = 16.

The first ten primary and related virtual indexes will be visible in Fig.2.6. The dark
columns sign the position associated primary entries. Vertical axis represents the length
of the stored strings in bytes. Actually only the position associated strings will be stored,
but it is possible to refer that strings which are start with a primary entry and fully cover
one or more succeeding primary entries(these are the virtual indexes). In the figure the
numbering starts from 256 as the starting point of the dynamic dictionary.
Based on the previously introduced storage and representation need it is possible to de-
termine the theoretical entry level compression. In Fig. 2.7 both the primary and virtual
index related compression ratio is visible. It means that only twenty three primary entries
are needed to cover the first 256 dynamic entries due to the extension. From the figure
it is visible that the compression ratio of VDE-LGD(∞) tends much more faster to zero
than LZW. Let’s compare the theoretical compression ratios at primary entry 23 from the
dynamic dictionary, which would be printed out during the 24th final match, fm = 24. In
case of LZW Rb = 9, em23 = 24 and dlog2(Sin)e = 8, that is:

CRLZW (24) =
9

24× 8
=

3

64
, (2.20)

19

Figure 2.6: VDE theoretical expansion. Vertical axis represents the length of the stored strings
in bytes. Horizontal axis represents the indices, the dark columns sign the position associated
primary entries.

while in case of VDE-LGD Rb = 16, em23 = 2796204 and dlog2(Sin)e = 8, that is:

CRV DE(24) =
16

2796204× 8
=

1

1398102
=

3

4194306
. (2.21)

This comparison shows the fact that with VDE significantly better compression ratio can
be achieved than LZW; of course this is very input pattern dependent.

From the other side if VDE would be fed with an n × (a) input pattern then it would
behave like a traditional LZW from memory consumption point of view. However this
would led to more poor compression ratio since growth rate of primary entries is O(n2),
while O(n) in case of LZW. Therefore, apart from the uniquely decodable representation,
encoding of n × (a) input pattern with VDE the compression ratio would be twice as
much as with LZW. Let n is the nth primary index. Since the length of associated entries
are equal the following equation is true:

CRV DE = log2(n
2) = 2log2(n) = 2CRLZW . (2.22)

Considering the uniquely decodable representation the result will be very close to the
theoretical value:

CRV DE =
16

9
CRLZW ≈ 2CRLZW . (2.23)

This means that VDE fulfills that expectations if it should provide the asymptotically
optimal feature regarding worst case scenario.

The worst case scenario will be given to the limited least memory demanding input pat-
tern. Supposing that Sin = 256. Then VDE also could have Sd = 65536 primary entries.
In this case Sde = 65536×65537

2
= 2147516416. Based on this Rb = dlog2(Sin + Sde)e = 32.

20

Figure 2.7: VDE theoretical entry level compression. Vertical axis represents the compression
ratio. Horizontal axis represents the indices.

During dictionary construction every printout would lead to the following compression
ratio:

CRV DE(fm) =
32

9
≈ 4 ≈ 2CRLZW , (2.24)

as in previous case.

2.3.3 Encoding Time Complexities

In this section the LZW encoding speed will be compared to VDE-LGD(∞) encoding
speed during dictionary building. The dependency from the length of the dictionary also
will be examined. In the followings the time complexity will be determined as the total
cost which is required to process the input characters. Considering encoding speed let’s
identify the types of the operations and the associated sub-costs:

– read a word from the input (cre); where one character represents the shortest word,

– search for the longest matching word from the dictionary (csea),

– determine the output value (cde),

– write out the value (cwr) and

– insert the new word into the dictionary (cins).

The costs of these steps will be the basis of the analysis.
To make further calculations easier supposing that read a word from the input or write
out the determined output value can be considered constant and equal, that is cre = cwr =

21

const1.
The realization of the dictionary is usually a kind of associated array. However the cost
of the search and the modification of the association array is the applied data structure
dependent operation. Mostly hash table or a sort of binary search tree(red-black tree,
b-tree, etc.) is applied as an associative array. In this case the application of a prefix-tree
is also possible.
Supposing that the length of the dictionary is free to choose, however once it is determined
will not change during the encoding process. In this case hash table could be a good
choice, since if the length is preliminary known then the time demanding re-hashing is
avoidable. Additionally it can provide for both search and insertion that the average
cost of these operations is O(1). Therefore in the following examination a hash table
will be the dictionary, additionally search and insertion related costs can be considered
csea = cins = const2.

LZW Encoding Time Complexity

According to the theory of LZW it can encode the input character by character. It means
that every character read has a const1 cost.
During search the encoder always goes to the first fail, which means that particular char-
acters will be looked up twice. The relative frequency of duplicated comparisons is in
relation with the average entry length in this case. The number of duplicated lookups is
limited to the number of dynamic entries in the dictionary which is Sd.
The determination of the output value is simple in this case and does not require any
complicated computation. Therefore this operation can be considered as a constant du-
ration operation with cost const3.
Let the number of input characters is n.
First the n× (a) input pattern and its processing time will be examined. The cost of the
reads is equal with the number of the input characters, which is: Tr = n× const1.
During the encoding of this pattern the relative frequency of duplicated comparisons is
a linearly decreasing function. Therefore theoretically the weight of this charge is tend
to zero. In fact there is a practical limit, which is influenced by the number of entries.
During dictionary construction n characters are divided into p linearly growing length
entries, where p can be determined according to the following formula:

p = d−1 +
√

1 + 8n

2
e. (2.25)

Therefore the cost of comparisons:

Tcomp(n) = (n+ p)const2. (2.26)

The number of cde and cwr is equal with p, therefore:

Tins(n) = p× const2, Tde(n) = p× const3, Twr(n) = p× const1. (2.27)

So total cost is:

T (n) = Tr(n) + Tcomp(n) + Tde(n) + Tins + Twr(n). (2.28)

The formula points out to the dependency from the input statistical characteristics:
if the input can be compressed with the highest efficiency then p/n → min and thus

22

T (n)→ min.

Examining the worst case CRLZW pattern it is clear that p/n → max, that is T (n) →
max.

VDE Encoding Time Complexity

Considering the VDE encoding method two different phases can be differentiate. During
first phase VDE works just like LZW: reads a character from the input, attaches it to the
word to be searched for in the dictionary. When the algorithm cannot find more identical
entry the second phase wil start. It examines if the succeeding entry of the last match is
identical with the upcoming part of the input. To perform this examination two strategies
can be applied. First strategy does not take into account the length of the succeeding
entry and keeps on the reading and comparison character by character. Another strat-
egy takes into account the length of the succeding entry and reads the required amount
of characters from the input. During further examinations the second approach will be
applied. Let the input size again n.

Supposing that o = (n/2) and the input pattern is the o × ab, which has the most
favourable compression ratio. In this case the n number of characters are splitted into p
number of positions:

p = [log2(3n)] + 1, if n = 2. (2.29)

In this case the second phase is the ”normal” operation from the beginning. This
means that during processing the input the number of read and comparison operations
has a quadratic proportion with the number of used positions:

Tr(n) = p2 × const1, Tcomp(n) = p2 × const2. (2.30)

Determination of the output composed of the sub-cost a subtraction, a multiplication and
an addition. These costs are depending on the number of digits of the operands. However,
due to the special pattern, the output numbers are strictly monoton growing ones. These
have logarithmic proportional connection with the number of digits. The most expensive
operation is the multiplication since it has a quadratic dependency from the digits of the
operands:

Tde(n) = O(dlog(Sin + p2)e2), (2.31)

and Twr(n) and Tins(n) just before:

Twr(n) = p× const1, Tins(n) = p× const2. (2.32)

So,
T (n) = Tr + Tcomp + Tde + Tins + Twr. (2.33)

Examining the worst case CRV DE pattern it is clear that pV DE = pLZW , and therefore
TV DE(n)→ max.
Examining the execution times it is easy to see that considering the most favorable pat-
terns VDE can more efficiently encode a unit of input data than LZW.
However if the input pattern is the worst case from encoding point of view, then no sig-
nificant difference between the two method: the lack of squaring does not increase the
time complexity of VDE.

23

Decoding Time Complexity

During decoding the main operations are the read an identifier, decode, insert new entry
into the dictionary and printout the word. The search operation is missing. It is easy to
recognize that the difference between LZW and VDE is that in case of VDE square root
computation is required to be able to lookup the portions of the decoded data. However
as a result of this operation several read operations may be avoided. The question where
is that limit when the computation of square root more efficient than the substituted read
operations?
In case of most favorable pattern, due to its monotone characteristic, there will be a
theoretical threshold when it is worth to substitute the reads with computation, since its
normalized gain gets higher and higher.
In case of worst case pattern VDE will perform more poor than LZW since it can identify
only one character, while must compute the square roots for each and every virtual index.

The section relates to Thesis 4.1.2.

2.4 Quantity Analysis on the Chaining of Repetition

Free Words Considering the VDE Composition

Rule

The motivation behind this section was raised during the examination of the boundary
value patterns of the Virtual Dictionary Extension (VDE) compression method. During
the VDE compression method words are stored in the so called compression dictionary,
therefore the base unit of the boundary value pattern is the word.

2.4.1 Terms and the Formal Definition of the Goal

Terms

Let A an alphabet, which is the finite set of symbols. We can define words over A. Words
defined over A are sequences of symbols from A. In the following the symbol, character
or letter will be used as a synonym of each other. Let’s define the following sets of words:

• A∗ refers to such a set of words in which empty word or word with zero length also
available,

• A+ refers to such a set of words in which the length of the words is at least one
character long,

• Aq set contains all the q length long words.

The q length of a wi word is equal with the number of letters in wi, eg.: q = |wi|. Factor
of a wi word is a block of consecutive letters of wi. Under prefix of a wi word I mean
such an u factor of wi, where u consists of identical sequence of identical characters of wi
on the first |u| letters. Therefore |u| ≤ |wi|.

24

Considering the A = {a, b} alphabet. The number of different q characters long words
which can be composed over A, is equal with the b = 2 based exponential function, that
is bq. According to the LZW compression method the so called dictionary is composed
and maintained during the encoding procedure. The dictionary consists of wj words from
the set A2+ and the word associated identification numbers. These numbers are simple
sequence numbers. During compression these sequence numbers are written out instead
of the associated words. According to the composition rule of the dictionary there must
exist a wi word, with length (q − 1) = |wi|, in the dictionary before any wj word, with
length q = |wj|, can be written into it, where wi must be the prefix (or fraction) of wj.
Additionally the first character of wj must be identical with the last character of w(j−1).

Definition 2.4.1. These identical characters of one after another words will be called
shared characters.

The requirement of the existence of shared characters is called to connectivity con-
dition. The set of words which satisfy the connectivity condition are the connectible
words. The composition rule provides that the dictionary is duplication free: any word
can be placed only once into it. We can easily determine the input character sequence
to achieve the poorest compression ratio: the shortest words should be associated to the
smallest sequence numbers.
Consider a dictionary where to each and every entry the number of associated identifi-
cations is equal with the position of that particular entry within the dictionary. So, one
identifier/sequence number is associated to the first entry, two identifiers/sequence num-
bers are associated to the second entry, etc. With this association rule the concatenation
of one after another words are also can be unequivocally identified over the individual
entries1. During the concatenation based word identification the shared characters will
be considered once per boundary.

Definition 2.4.2. Those words which are directly written into the dictionary will be
called primary words, and denoted by wp.

Definition 2.4.3. The composition based words which contain wp words as factors, will
be called virtual words, and denoted by wv.

Let’s denoting by D the set of those words, which are still identified in the dictionary,
no matter if the identified word is primary or virtual.

Definition 2.4.4. For a given q length, those primary words for which wpi ∈ Aq \Dq is
true are called available words.

Formal Goal

The goal is to determine the features of such a string where the shortest primary words
occupy the positions with smaller sequence number considering that the presence of these
primary words based virtual words may modify the available number of longer primary
words.
Formally I would like to determine the features of a wvn , which is composed from primary
words on the way

1This method in itself let the occurrence of duplicate entries.

25

– that |wpi| <= |wpj | is true ∀i, j ∈ N | i < j, and wpi = wpj then, and only then if
i = j,

– wvl = wvm , then and only then if l = m, and

– additionally the presence of wq+1
px implies that there are words wqpi , w

q
pi+1

, ..., wqpi+m
∈

Aqp and wqvj , w
k
v2
, ..., wqvl ∈ A

q
v where i <, .., < i+m < x, j < x, k < x, l < x so that

Aqp ∩ Aqv = ∅ and |Aq| = |Aqp ∪ Aqv| = bq.

2.4.2 Quantity Analysis of Primary Words Influenced by Vir-
tual Words

Figure 2.8: Implicit dependency up to four characters long primary words. Numbers greater
than ’1’ represent the primary words. Numbers marked with ’1’ represent the presence of virtual
words. Green squares are the envelopes of the direct effect of the homogeneous concatenations
of q characters long words.

Supposing that we have an alphabet A = {a, b}. The cardinality of A, denoted by b,
is two. Composing all the two letters long words will result (b = 2)q=2 = 4 words. Since
there is no preliminary constraint, origins from existing virtual words, the words can be
connected to each other by multiple order. As a result these two-letters-long words will
compose three three-letters-long, two four-letters-long and one five-letters-long virtual
word by all means. Supposing that there is at least one way as the five uncovered three-
letters-long primary words are connectible. Then these connected primary words (that
is written into the dictionary) will cover (that is, can be conformed to) four five-letters-,
three seven-letters-, two nine-letters- and one eleven-letters-long primary words.

The Effect of the Prime Numbers

To determine whether a t characters long word can be a composition of two subsequent
primary words with length q, where q ≤ t, we can use the following formula, considering
the rule of the dictionary construction:

q =
t+ 1

2
. (2.34)

26

In case of the result is an integer then the concatenation of two subsequent q characters
long primary words implicitly cover another t = (2q − 1) characters long primary word.
Those t = (2q − 1) characters long words, which are implicitly generated through the
concatenation of shorter (q characters long) primary words preceding the usage of the
same t characters long primary words, are an examples of the previously introduced virtual
words. Therefore the virtual words and the implicitly covered entries/words will be used
as a synonym of each other.
In case of we are interested about if is there a t characters long virtual word which is the
concatenation of three, q characters long, subsequent primary words we have to examine
if the q = t+2

3
value is an integer or not? Generally speaking, by denoting the number of

concatenated, subsequent, same length entries with x, the formula turns into the following
one:

q(x) =
t+ (x− 1)

x
. (2.35)

With a small transformation we will get the following formula:

q(x) = 1 +
t− 1

x
. (2.36)

The formula will lead to integer results, that is word with valid length, in each and every
case when the counter is divisible by the denominator. Since the negative length is not
an option, the value of x can be greater or equal than 1 and less or equal than t− 1:

1 ≤ x ≤ (t− 1). (2.37)

Substituting the boundary values into the formula:

q(1) = 1 +
t− 1

1
= t, (2.38)

q(t− 1) = 1 +
t− 1

t− 1
= 2. (2.39)

This means that a t characters long entry without concatenation can cover a t characters
long entry, which is trivial. On the other hand (t − 1) two characters long strings has
to be concatenated to cover a t characters long string. The point is if the counter is a
prime number, that is, t = (prime number)+1 then the denominators can only be one of
the above mentioned boundary values. This means that if the number of two characters
long entries is less than t − 1, then there is no theoretical way to cover the t characters
long primary words as the concatenation of q < t long primary words. Of course, the
concatenation of two primary words with different length can cover a t characters long
primary word even though (t− 1) = prime number. However, we expect negligibly small
amount from these type of constructions, otherwise the third condition from subsection
2.4.1 would be significantly hurt. Additionally, the mass appearance of such type of
virtual words, which are the outcome of the connection of words, with different lengths
would result even more negligible effect on the available amount of longer words, due to
the exponential growth rate, as we shall see.

Our task is to determine whether how many n characters long primary words remain
from the 2n ones, if we consider the concatenation of homogeneous l,m, etc. characters
long words, as virtual words, according to the formula (2.36).

27

Theorem 2.4.1. From the bq pieces of q characters long primary words there are no more
than c(b)

√
bq ones can be covered by the previously generated virtual words.

Here c is a constant next to a given b = |A|.
From the field of number theory it is known that for every natural number n,

d(n) ≤ 2
√
n, (2.40)

where d(n) is the number of divisors of n. Other notation of d(n) is σ0(n).

By now the connection between the Theorem-2.4.1 and the theory of prime numbers
is clear, and the expectation become obvious regarding the asymptotically vanishing ratio
of influencing virtual words on a given length of primary words.

Proof of the Square Root Proportional Influence of Virtual Words

By focusing exclusively to the quantity based coverings I can determine the exact number
of virtual words according to the algorithm described below. But it is important to
mention that this algorithm does not take into account the number of shared characters
and some other rules, which are influencing the possible number of connectible words.
The outcome of this algorithm is an array. In this array the columns are associated to the
different length of words irrespectively if the words are primary or virtual ones. The first
column represents the two, the second column represents the three and so on characters
long words. Therefore in a particular column the maximum number of the filled cells
is equal with bq where q means the nth + 1 column. The header of this array contains
the number of the already filled cells in the given column (not the sum of their values),
denoted by sq. Initially the header contains infinite number of zeros, and according to
our notation sq ≤ bq. A particular cell in the array is identified by it’s row and column
numbers respectively, and denoted by ai,j. Initially the cells are just left blank. The array
filling always starts from the (1, 1) element. To be able to localize the position of the so
called base element during the filling I will introduce two pointers:

– let r the position of the actual row (row under write), and

– let the previously mentioned q the position of the actual column+ 1.

According to the composition rule of virtual word a stand alone primary word is not able
to cause any covering. Therefore we simply write the column associated length of the
word into ar,(q−1) = a1,1, which is two according to q = 2. Parallel we increase the value of
sq(= s2 in this case) by one. Then, as just in case of real dictionary composition, we have
to increase the row pointer by one. Since the sq ≤ bq relation is still valid we can write
number q into the cell ai=r=2,j=q−1=1. However, two primary words will compose a virtual
word. It is taken into account according to the following manner: due to the composition
rule the number of virtual words should be exactly r − 1. Since r = 2 the number of
virtual entries is one in this case. Now we have to find the position of the virtual word
in the array. We will administer the effect of a primary entry in the row of that entry.
Two two characters long entry can expose its effect in the three characters long entries.
Generally speaking we will add the values of the cells in the (q− 1)th column and deduct
the result with the number of factors / primary words minus one. In this particular

28

case a1,1 + a2,1 − 1 = 3. Let 1 is notation of the virtual words in the array. Then we will
write a2,2 = 1 and parallel increase the sq=3 counter. In case of sq > bq we will increase
the value of q by one. However, from here during the summation we have to take into
account that there are shifts in the columns of primary words. Due to the composition
it is not possible that any indication of a virtual entry appear prior to a primary entry.
Therefore during summation we start from the j = q − 1 column and check in each and
every step if is there any value, which is greater than one at cell ai,(j−1). If so then we
have to decrease the value of j by one. To be able to distinguish the pointers belong
to the base position and therefore to primary entries from pointers which are required
for computing the positions of virtual entries we will introduce the following utility and
virtual pointers:

– ru is the row utility pointer,

– qu is the column utility pointer + 1,

– qv is the column position + 1 of a virtual entry.

Additionally n is used to store sub-totals during the process.
Part of the above algorithm generated semi-infinite array is visible in Fig.2.8. In this
example b = 2 has been selected, but of course this value can be an arbitrary one. In
the figure the words up to four characters are represented. It is visible from the figure
that, as it is expected, all the two-characters- long words appear as primary entries. As
a consequence three three-characters-long word appear as virtual words. Therefore only
five of the eight three-characters-long word can appear as primary word. As just in case
of four-characters-long words: three of them is covered by the virtual words and only
thirteen can appear as primary entry.
The number of primary words with a given q length will be denoted by sp(q). In this case
the the following inequality is true: sp(q) <= bq. By introducing the sv(q), which is the
number of virtual words belong to a given q, we can write that:

sp(q) + sv(q) = bq. (2.41)

By examining if which q′ ≤ q can influence, that is decrease the number of q characters
long primary words consider the formula (2.36). By performing the t → q substitution
we can say that the length of longest influencing q′ primary word is:

q′ =
q + 1

2
(2.42)

if q is odd.
As long as q is even the q + 1 is odd, therefore in this case the longest possible virtual
word must consists of at least three concatenated q′′ primary words with the length:

q′′ ≤ q + 2

3
. (2.43)

Supposing that sp(q
′) = bq

′
, than sv(q) ≥ bq

′ − 1. In case of q is even then sv(q) ≥ bq
′′ − 2.

Supposing that all the q′ is available, that is sv(q
′) = 0 (uncovered by such virtual words

29

which are the result of the concatenation of shorter primary words). Then we generally
can say that

sv(q, x) = b
q+x−1

x − (x− 1)

=
x√
bq+(x−1) − (x− 1)

= bq
′ − (x− 1)

(2.44)

Here x indicates the number of concatenated primary words, where the length of these
primary words is obviously shorter than q. Based on (2.44):

sv(q) ≤
q−1∑
i=2

b
q+i−1

i − (i− 1). (2.45)

Applied by the geometric progression sum formula,

(b− 1)
k∑
i=1

bi = bk+1 − b, (2.46a)

k∑
i=1

bi =
bk+1 − b
b− 1

(2.46b)

we will get, depending on if q is odd or even:

q′∑
i=2

bi =
bq
′+1 − b
b− 1

− b =
b

q+1
2

+1 − b
b− 1

− b =
b

q+3
2 − b
b− 1

− b (2.47a)

q′′∑
i=2

bi =
bq
′+1 − b
b− 1

− b =
b

q+2
3

+1 − b
b− 1

− b =
b

q+5
3 − b
b− 1

− b (2.47b)

respectively. Since the formulas above contain all the words with length 2 ≤ i ≤ q′, these
values must be decreased by the number of words with given length minus one, as I noted
it in (2.44). Depending on if q is odd or even the formulas are the followings respectively:

sv(q) ≤
q′∑
i=2

bi −
q′−1∑
i=1

i, (2.48a)

sv(q) ≤
q′′∑
i=2

bi −
q′′−1∑
i=2

i. (2.48b)

Based on (2.41):
sp(q) = bq − sv(q). (2.49)

In case of b is fixed and q is odd:

s′p(q) ≥ bq + b− b
q+3
2 − b
b− 1

+
q′(q′ − 1)

2
− 1 =

bq + b+
b

b− 1
+

1

2
((q′)2 − q′)− 1−

√
b3
√
bq

b− 1
,

s′p(q) ≥ bq + c1 + c2((q
′)2 − q′)− c3

2
√
bq.

(2.50)

30

In case of b is fixed and q is even:

s′′p(q) ≥ bq + b− b
q+5
3 − b
b− 1

+
q′′(q′′ − 1)

2
=

bq + b+
b

b− 1
+

1

2
((q′′)2 − q′)−

3
√
b5 3
√
bq

b− 1
,

s′′p(q) ≥ bq + c1 + c2((q
′′)2 − q′′))− c3

3
√
bq.

(2.51)

From the formulas above, (2.50) and (2.51), we can see that the dominant components
are bq, c3

3
√
bq and c3

2
√
bq. Supposing that q is great enough we can apply the following

approximations:

s′p(q) ≥ bq − c3
2
√
bq = bq(1− c3

1
2
√
bq

) (2.52a)

s′′p(q) ≥ bq − c3
3
√
bq = bq(1− c3

1
3
√
b2q

). (2.52b)

The result is the proof of the Theorem (2.4.1) what I have worded around the formula
(2.40). Based on the formulas the increasing q results that the second member tend to
zero. Therefore the expression itself asymptotically tend to the value:

lim
q→∞

s∗p(q) = bq. (2.53)

Formula (2.53) means that, in spite of the high number of virtual words, as q increasing the
amount of primary words get more dominant compared to the virtual words considering
the length of the words. �

The section related to the asymptotic condition sub-thesis from Thesis 4.1.2.

31

Chapter 3

Interval Merging Binary Tree

In a generic context of an operating support system, more specifically in relationship with
the performance management of a telecommunication network, streams of performance
counters need to be ingested and transformed towards higher level KPI-s in order to
characterize and monitor the performance of such networks. Among several different pos-
sibilities a natural choice for such an ingestion layer and real time transformation engine
is a stream processor.
Stream processors are cluster level generic processing frameworks allowing real or near
real time operations over streams of data. Some of them can be programmed in an SQL-
like stream processing language, a construct supporting different processing primitives.
Alternatively, and more widely available, it is possible to program such stream processors
in high level programming languages such as C++ or Java, like in case of the actually
applied Storm framework[6].
Major object-oriented programming languages support data types related to collections,
like Java Collection Frameworks[22]. These contain data elements that are related to each
other. Implementations range from generic collection types towards specialized ones. One
collection type useful for our purposes is SET, which is not allowing the duplication of
data elements within. There are three basic operations over SETs: INSERT and DELETE
operations modify the number of elements in the SET, while SEARCH operation does
not.
SET implementations use special data structures based on the desired trade-off between
storage space and the duration of the typical operations defined on sets. When the num-
ber of involved elements is well predictable and relatively steady and there is no need
for sorted iteration, hash data structure implementations are the best choice. One hash
structure that can be used to implement a filter is the Bloom filter [39]. In cases when
the number of elements is not well predictable, the wrongly selected capacity may led
to too frequent re-hashing which makes the system slower. Additionally, Bloom filters
allow for false positives. This implies that the duplication will not only be avoided, but
all instances of the data item will be completely filtered out. When sorted iteration is a
must or the number of involved elements is not well predictable Binary Search Tree [23]
data structure implementations could provide better performance. The original BST was
invented in 1960 and serves as the basis of many other advanced variants. B-tree[29] has
been proposed as a variant optimizing the movement of large amounts of data. Typical
application areas of B-trees are file systems and databases. The main drawback of BST
is that the tree may become degenerated after certain sequences of the insert and remove
operations. To eliminate the problem of degeneration and make the BST balanced, im-

32

plicitly improving the performance of the SEARCH operation, AVL Tree [25], [26] has
been proposed in 1962. Balancing is time demanding but only when INSERT or RE-
MOVE operations are performed, since these operations may modify the structure of the
tree. On the positive side both INSERTION and REMOVE execute embedded SEARCH
operations, therefore eventually the operations required to keep the tree balanced do not
appear as pure loss compared to unbalanced trees. Red-Black Tree[31],[32] combines the
advantages of AVL and B-trees: it is based on a modified B-tree variant and it keeps the
tree balanced. (a,b)tree[33] is a balanced tree where all the leaves reside on the same
level. There are other trees which are optimized to solve special problems faster or with
less resources. Interval tree[34] and Segment tree[37] have been developed to perform
a specific search operation on the number of intervals containing a particular key. The
reason behind of the so many BST variants is that all of them aiming different trade-off.
However the comprehensive comparison of the variants has not been performed until 2004.
[38] covers the missing gap: most of the above introduced self-balancing trees are part of
the performance analysis. It is common in the above mentioned data structures, except
the last two ones, that these trees must store all the keys. In the Problem section I will
describe why this feature might be a drawback during near real-time duplication filtering
from both space and processing time point of view.

3.1 Problem

Given an input stream of keys where the key is a sequence number. Keys are arriving
mostly ordered respective to the sequence number. The task is to filter out those entries
that arrived already once, meaning that the sequence number has had already this value
in an earlier key instance. Additional boundary conditions regarding the arrival pattern
apply:

1. upper unbounded range: there is no upper bound of the sequence numbers apart
from the limit of the binary representation of this field,

2. lower unbounded range: at any point in time a new key can arrive to the system
with a sequence number lower than any sequence number encountered so far,

3. there are long, contiguous intervals of keys with relatively few ’gaps’ (missing keys)
in between,

4. after a while almost all keys arrive,

5. key duplication (i.e. same key arrived at least twice) on the arrival side is possible
due to some reason.

Due to condition 2., a traditional mask cannot be applied for the incoming keys that
would drop all keys below a pre-defined value. Thus according to naive approach once
all the previously arrived keys have to be stored and the newly arrived ones have to be
compared with previously encountered keys.

So as a conclusion, based on the requirements, SET abstraction could be an ideal
solution for the problem, however actual implementations suffer from storage space and
processing time limitations due to the two-sided unbound range, see Fig.3.1. In this figure

33

Figure 3.1: Naive approach: the storage need is linearly proportional to all the keys regarding
which duplication-free storage should be guaranteed.

timestamps are marked by ti, while keys are marked by nj. Dashed arrow and striped
rectangle point out to a key, which has already arrived. The storage need is linearly
depending on the number of de-duplicated keys, while the search is log2 proportional if
the keys are stored in ordered fashion.

3.2 Methodology

I propose in the subsequent a binary tree that stores intervals of keys rather than indi-
vidual values, implemented using a JCF SET-like interface. I describe the concept of the
tree, then I focus on the insertion operation and the concrete data structure that can
optimally implement such a tree.

3.2.1 Concept of the data structure

Let’s suppose that keys arrive in the following order:

...n0, n−1, n2, n3, n7, n5, n4, n6, n−2, ...

In a naive approach all elements could be stored in a hash or in a binary search tree which
is easily searchable, but still the binary search tree or the hash remains an upside-downside
open system with infinite storage requirements when keys can arrive with infinite delay.
Increments are ordered, only the arrival sequence can be disordered. The first tweak to

34

the naive approach is to represented arrived keys as pairs. So, elements will be stored like
the following:

(n0, n0), (n−1, n−1), (n2, n2), (n3, n3), (n7, n7), (n5, n5),

(n4, n4), (n6, n6), (n−2, n−2).

At first sight it looks like that we did not win anything, but only doubled the memory
footprint. The second tweak is not to automatically put newly arrived elements at the
end, but rather to organize the elements in an ordered fashion, filtering at the same time
duplicates found during the ordering process. This can be conceptually a sequence of 3
operations: insert at the end, order by key and a filter to skips the entry if it is already
found:

(n−2, n−2), (n−1, n−1), (n0, n0), (n2, n2), (n3, n3), (n4, n4),

(n5, n5), (n6, n6), (n7, n7).

The third tweak is to add an operation that we call interval merging: every pair of
neighbor values is checked and if the values are consecutive, the two pairs are converted
into one, where the first value of the resulting pair is the first value of the first pair and
the second value of the resulting pair is the second value of the second pair. Conceptually
the 4th operation can be executed after the order by and filtering operations, but in a
more efficient implementation these operations will be covered by a more complex variant
dealing with all operations in one INSERT procedure, as described below:

1. The key for ordering is the L-value of an ordered pair and R-value is the second
component.

2. If the first key/number arrives store it in the data structure as an ordered pair with
the same value stored both as L- and R-values.

3. All successive keys stored according to the following: search the place for the key
(remember this is the L-value of the pair) in the data structure

(a) If it exactly matches with an element in the data structure then drop it ⇒
DUPLICATION (message already received)

(b) If it is the predecessor of the first element check the distance between them (the
degree of succession/predecession between them) based on the first element’s
L-value.

i. In case the distance is 1 modify the R-value of the generated ordered pair
to the R-value of the first element. Then delete the L-value. Insert this
pair into the data structure ⇒ MERGING.

ii. In case the distance is higher than 1, simply insert the pair into the data
structure.

(c) If it is a successor of the last element check the distance between them based
on the last element’s R-value.

i. If the last element’s R-value is smaller than the currently arrived one’s
R-value with more than 1, insert the currently arrived element into the
data structure according to rule 2.

35

ii. If the distance between the last element’s R-value and the currently arrived
one is exactly 1, then replace the last element’s R-value with the currently
arrived one ⇒ MERGING.

iii. If the last element’s R-value is higher or equivalent to the currently arrived
one’s R-value, then drop the actually arrived one⇒ DUPLICATION (key
already received).

(d) If it is in the middle in the data structure both direction checking is required
in the following order.

i. Check the predecessor’s value.

A. In case the currently arrived element’s distance is less than 1, drop the
message ⇒ DUPLICATION.

B. In case the currently arrived element’s distance is 1 then change the R-
value of the predecessor’s with the current one’s value. Then check the
distance from the successor. If it is 1 then change again the predeces-
sor’s value (updated with the currently arrived one) to the successor’s
value ⇒ DOUBLE MERGING.

ii. Else check the distance between the successor’s L-value and the currently
arrived element’s L-value. In case of equivalence change the currently ar-
rived element’s value to the successor’s L-value. Then delete the successor
and insert the newly created pair ⇒ MERGING.

iii. Else insert the newly arrived element into the data structure according to
rule 2.

In the following we describe the operation of the algorithm for our small data set:

• n0 arrives, our data structure will store the following element:

(n0, n0)

• n−1 arrives, our data structure will store the following element:

(n−1, n0)

• n2 arrives, our data structure will store the following element:

(n−1, n0), (n2, n2)

• n3 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3)

• n7 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3), (n7, n7)

• n5 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3), (n5, n5), (n7, n7)

36

• n4 arrives, our data structure will store the following element:

(n−1, n0), (n2, n4), (n5, n5), (n7, n7)

Then
(n−1, n0), (n2, n5), (n7, n7)

• n6 arrives, our data structure will store the following element:

(n−1, n0), (n2, n6), (n7, n7)

Then
(n−1, n0), (n2, n7)

• n−2 arrives, our data structure will store the following element:

(n−2, n0), (n2, n7)

So at the end storing only 4 keys, represented as 2 vectors or complex numbers, is required
to represent 9 arrived elements. These two complex elements represents two intervals in
which all expected keys arrived to the system, this is from where the data structure name
origins.
This organization of keys can successfully fulfill the storage complexity related require-
ments.

3.2.2 Data Structure for Interval Merging

In the previous section an algorithm was introduced that performs an INSERT oper-
ation on an imaginary data structure with elements of type value pairs that represent
related intervals of ranges of arrived messages without gaps. The data structure can be
implemented in many ways impacting the time complexity:

1. in an array element pairs can represent L- and R-values (continuously reserved
memory area for a particular type of elements),

2. in a linked list nodes can represent value pairs (not continuously reserved, but
references maintained to next/previous nodes as well)

3. in potentially many other ways not listed furthermore,

4. in a newly developed binary tree that we will further elaborate on.

Examining the above mentioned implementations:

1. in case of an array with ordered value pairs the average time complexity is T (n) =
O(log(n)). However INSERT and REMOVE can require too many movements de-
pending on the place of the affected element in the array. INSERT cause re-indexing
of all successor elements and thus moving them one step forward. REMOVE can
cause the opposite direction movement.

37

2. SEARCH in a linked-list is not an efficient operation, however INSERT and RE-
MOVE is very efficient.

As it is visible from the analysis of the first two data structures it seems that a tree-based
approach would be effective: in case of a well balanced tree the element-related operations
can be quite fast. The question is how to apply element pairs in the nodes. To solve this
problem I propose the so-called Interval Merging Binary Tree(IMBT). A node in the tree
has the following signature: {pointer to parent, interval Left
V alue, interval Right V alue, pointer to Left Child, pointer to Right Child}.

NULL parent pointer means that this particular element is the root node of the data
structure. NULL pointer to Left
Child and pointer to Right Child means leaf node just as in a traditional binary search

tree.
A node always stores value pairs, which are the interval Left V alue and the interval Right V alue,
despite elements to be inserted, removed, searched for being single keys. The relation be-
tween a parent node and aRight Child of the parent node is that the interval Left V alue
of the child node must be higher by two or more than the interval Right V alue of the
parent node. The relation between a parent node and a Left Child of the parent node
is that the interval Right V alue of the child node must be smaller by two or more than
the interval Left V alue of the parent node.
Additionally, pointers to parents and left or right elements are substituted by single lines.
The left and right values must be indicated. Fig.3.2 is the visualization of the example
from previous section, based on the graphical representation of IMBT and the INSERT
concept:

Figure 3.2: The evolution in time of the IMBT based representation

The section relates to Thesis 4.2.1.

3.3 State-space analysis

.

In contrast to a completely balanced binary search tree, it is impossible to associate
to the newly developed data structure a one dimensional (the number of input key de-
pendent) function to determine for instance the average cost of an operation.

38

Nevertheless, for further development, it is essential in case of any data structure to
determine the actual boundaries of their applications.

In this section I introduce the hardness of the identification of the state space of this
data structure, which is needed for the later performance analysis and other input pattern
based classifications. During the modeling Fibonacci sequences, bipartite multi-graphs
and combination tables are applied.

3.3.1 Inteval State-space

The surprising thing regarding the scenarios visible at Fig.3.3, Fig.3.4 and Fig.3.5 is that
the input size is four in all cases.
As it is visible in case of four keys (N = 4), based on the possible number of neighbors,

Figure 3.3: IMBT interval evolving when no direct neighbor exists.
In the figure N represents the T time as well. By looking to the figure from the right side, the
remaining axes display a histogram of the intervals in different moments.

the following scenarios can be distinguished:

– None of the keys are neighbour of each other, like Fig.3.3,

– Two of them are neighbours and the other two are not,

– Two of them are neighbours and the remaining ones as well,

– Three of them are neighbour and one is not, like Fig.3.5,

– All the keys are neighbour of each other, like Fig.3.4.

Therefore I can say that according to Hardy and Ramanujan [56]:

Theorem 3.3.1. the number of possible interval states in case of IMBT, at T = N time,
is equal with the number of ways N can be written as a sum of positive integers:

lim
N→∞

p(N) ≈ 1

4N
√

3
eπ
√

2N/3 (3.1)

39

Figure 3.4: IMBT interval evolving when the keys are subsequent

Figure 3.5: IMBT interval evolving when there are both neighbour and stand alone keys

We can identify the addends of the sum as the individual interval lengths of the nodes
in the IMBT. In this case for the a average interval lengths, considering the list items
above, we get the following values, respectively: 4/1 = 4, 4/2 = 2, 4/2 = 2, 4/3, 4/4 = 1.
As it is visible there are two equivalent values: 2. Therefore it is generally true that the
number of integer partitions is a rough upper estimation regarding the possible number
different averages for a given input size N .
Additionally p(N) does not say anything about the weight of the intervals based on their
position in the tree. Since the same decomposition may led to very differently weighted
arrangements it is matter if for instance the intervals of 8 is written in e.g..: 1+1+4+1+1
or 4 + 1 + 1 + 1 + 1 or 1 + 1 + 1 + 1 + 4 form. Supposing that the intervals are organized
into a balanced binary search tree, the cost of the search operation in first case is the
most favourable, and the last one is the least favourable case.
Therefore in Traversal Strategy Based Weight Classes I will examine IMBT from another
point of view.

40

3.3.2 Traversal Strategy Based Weight Classes

Figure 3.6: IMBT weight classes caused by the traversal strategy

In Fig.3.6 the arrows with number represent the jth comparison during the SEARCH
operations. Here I would like to mention that, for the sake of simplicity, during the
comparisons the less or equal will be considered as one atomic step. The dark background
of the number expresses that the result of the comparison can be positive (that is, the
node cover more than one keys). In this figure, instead of boundaries of the intervals, the
same information is displayed in the nodes like on the arrows as well.
As we can see if the key to be searched for is equal with the left hand value of the root
node then exactly one comparison will be performed. If the key to be searched for is in
between the left and right hand values of the root node or equal with the right hand value
then two comparison will be performed.
If the key is greater than the right hand value of the root node and fall into the interval
of the right hand child’s left and right hand values then three or four comparisons are
required, depending on the exact value.
If the key is less than the left hand value of the root node and fall into the interval of the
right hand child’s left and right hand values then two or three comparisons are required,
depending on the exact value.
By continuing the examination of the distribution of the different classes of intervals,
based on the required number comparisons, we can recognize the following rules (in case
of the intervals are organized into a completely balanced tree).
Considering the root (first) level there is one from that interval where (1, 2) comparison can
occur. At the second level there is one interval where (2, 3) and one interval where (3, 4)
comparison(s) can occur. Finally, at the third level the cumulated number of intervals
where (1, 2) and (2, 3) comparison(s) can occur is unchanged. However, the number of
(3, 4) comparison based intervals is increasing from one to two. Additionally two (4, 5)
and one (5, 6) comparison need interval appears.
By the cumulative number of types, as more and more layers are taken into account, we
will get the pattern visible at Table-1. Examining carefully the lists we can realize that

Theorem 3.3.2. the central element of each row composed from cumulative number of
weight types is the Fibonacci sequence itself. The numbers in the lists (lines in this case),
preceding the central elements, are also the evolving Fibonacci sequences themselves. The
rest of the numbers must satisfy the requirement that the sum of the numbers is equal
with 2n − 1 in every nth line.
However, another rule also can be recognized there:

Theorem 3.3.3. the numbers in a line from Table-3.3.2 are composed as the sum of
the two preceding numbers of the previous line, except the last one which is always zero.

41

Table 3.1: Distribution of weight classes in case of the IMBT is completely balanced.
The Fig.3.6 snapshot is marked with bold.

Distance from the root
Total number [number of comparisons

of nodes in IMBT regarding the left hand value]
1 2 3 4 5 6 7 8 9 10 11

1 1
3 1 1 1
7 1 1 2 2 1

151515 111 111 222 333 444 333 111
31 1 1 2 3 5 7 7 4 1
63 1 1 2 3 5 8 12 14 11 5 1

Table 3.2: Fibonacci sequences in the cumulated weight classes

111
1 111 1
1 1 222 2 1
1 1 2 333 4 3 1
1 1 2 3 555 7 7 4 1
1 1 2 3 5 888 12 14 11 5 1

Until now I have shown that there are two distinct components during the examination
of IMBT state space. One is if how many ways the number of keys can be decomposed
into integer partitions.
Another component of the state space (the weight classes) is based on the number of
nodes and depends on the associated traversal strategy.
Now, to be able to determine the combined number of input pattern classes somehow
we have to put these components together. In Bipartite Graphs and Combination Tables
on the modeling of IMBT State Space I will present this combination procedure and the
resulting mathematical models.

3.3.3 Bipartite Graphs and Combination Tables on the model-
ing of IMBT State Space

To be able to start the combined analysis we will perform the following mappings.
Let’s denoting the length of the interval belongs to an ni node from the IMBT by li ∈ L,
where L is a multi-set. Then we map the set of same length of intervals onto i1, i2, ..., ik ∈ I
elements. This means that by having the L = {l1, l2, ..., ln} lengths, where the values of
lh = li = ... = lj is equal, then this fact results one new element, ip, in the I set. That
is the following lh → ip, li → ip, lj → ip surjection is performed in case of lh = li = lj.
Therefore k ≤ n.
Let’s denoting the number of comparison required to achieve the left hand value of an
arbitrary ni node by si ∈ S, where S is a multi-set. Then let’s map the traversal strategy
based identical comparison weight types onto w1, w2, ..., wj ∈ W elements. This means
that by having the S = {s1, s2, ..., sn} lengths, where the values of sh = si = ... = sj is

42

equal, then this fact results one new element, wp, in the W set. That is, the following
sh → wp, si → wp, sj → wp surjection is performed in case of sh = si = sj. Therefore
k ≤ n.
Since the newly defined I and W are two disjoint sets we can consider them as the vertices
of a G(I,W) bipartite (multi-)graph. We will assign degrees to each vertex according to
the following manner:
The degree of each ii vertex is equivalent with the number of that particular interval
lengths. According to this in case of lh = li = lj the degree of the associated ii vertex is
d(ii) = 3.
The degree of each wi vertex is equivalent with the number of that particular weight types
in the search tree.
Therefore we can write that

Theorem 3.3.4.
∑j

i=1 d(wi) =
∑k

i=1 d(ii) = n = |E|, where E = {e1, ..., en} is the
set of the ei edges of G(I,W). That fact that the above two sets, I and W , are the
independently different classifications of the same nodes of the IMBT implies that he sum
of the degrees of the vertices in both sets are equivalent with n. � Considering an IMBT
arrangement/configuration where n = 4, and both I and W sets contain one-one vertex
with degree two, and two additional vertices with degree one-one. So, d(i1) = d(w1) = 2
and d(i2) = d(i3) = d(w2) = d(w3) = 1. At this moment regarding N we can only say
that N ≥ n.
It is obvious that to get the above I set two of the lengths must be equal, eg. l1 = l2, and
the other must differ from both l1 = l2 6= l3, l1 = l2 6= l4 and l3 6= l4. Definition: Those L
interval length multi-sets are called interval lengths ratio base classes, denoted by Lb, in
which

• at least one li exists which is co-prime to all the other lj, such that i 6= j supposing
that li 6= lj, or

• if li = lj for all i 6= j, than li = lj = ... = lk = prime number.

That is, L is an Lb if

∃li ∈ L | (∀i 6= j∧ li 6= lj ⇒ gcd(li, lj) = 1) ∨ (∀i 6= j ⇒ li = lj = prime number). (3.2)

Therefore, if eg.: L = {l1, l2, l3, l4} is an interval lengths ratio base class, that is L = Lb,
then Lb determines all the N1, N2, ..., which differ from each other by only an integer mul-
tiplication for a given (Lb, n = |Lb|) pair. This representation/decomposition is unique,
except for the order of the factors:

Nx = (d(i1)× l1 × x) + (d(i2)× l3 × x) + (d(i3)× l4 × x) =

= x× (d(i1)× l1 + d(i2)× l3 + d(i3)× l4)
(3.3)

where x ∈ {1, 2, 3, ...}. If n is given that is the maximum information we can get, regarding
N . In Fig.3.7 we can see all the different possible configuration for the above G(I,W),
where |I| = |W | = 3 and |E| = n = 4. That is, there are three-three vertices on both sides
of the G graph. About N we can say that N ≥ 4. If we are aware of the l1, l2, l3, l4 ∈ L
values, e.g.: l1 = l2 = 1, l3 = 2 and l4 = 3 and therefore L1 = Lb then we can say that
N1 = 7. However, N2 = 14, N3 = 21, ... and L2, L3 6= Lb. As it is visible from the Fig.3.7
there are seven different possible configuration exists. Regarding the number of possible
configurations, in case of a given (L, n) pair, till now we have got a mathematical model
as a G(I,W) bipartite graph. We state that

43

Figure 3.7: G(I,W), where |I| = |W | = 3 and n = 4

Theorem 3.3.5. the simplified adjacency matrix representation of a G(I,W), which is
derived from an IMBT according to the above process, can be corresponded to a contin-
gency table. Given an G(I,W) bipartite graph derived from an IMBT. Let’s prepare the
adjacency matrix of G(I,W), where parallel edges are allowed, on the following manner.
Since G(I,W) is a bipartite graph there is no edges between the vertices belong to the
same vertex set. Then we will apply the following simplification: instead of enumerate all
the points from both sets on the right side and the top of the adjacency matrix merely
the points from I will be displayed with the associated d(ii) values on the right side. On
the top of the matrix only the points from W will be displayed with the associated d(wj)
and values.
The edges appear in the matrix as numerical entries in the cells of the matrix. The value
of a particular cell represents the number of edges between the ii and wj points. However
the d(ii) and d(wj) values are constraints about the sum of a given i row and j column.
From Theorem 3.3.4 we know that the sum of cells in a row is equivalent with the degree
of that particular vertex. The same is true for all column. Therefore the sum of sums of
every row is equivalent with the sum of sums of every column. This feature of the simpli-
fied adjacency matrix is corresponding to a contingency or combination table, which may
contain discrete samples about the same multitude from two different point of view. �
At Fig.3.8 the simplified adjacency matrix representation of the G(I,W) graphs from the
Fig.3.7 are visible. Since the edges do not appear directly, the simplified adjacency matrix

Figure 3.8: Simplified adjacency matrix of G(I,W)

remains unchanged in case of two different, an ek and el edges, which are not sharing on
any vertices on none of their ends, are mutually replaced with each other. It is true for
that case as well when neighbours edges, sharing on a multi-degree vertex, replacing their
non-sharing ends with each other.
Therefore from the simplified adjacency matrix like this it is still hard to say at least the
formal condition when we may speak about different states, that is the total weight of the
IMBT. The number of states for a given (I,W) is the different number of total weights of
the IMBT. Nevertheless, we can apply the following transformation without violate the

44

validity of the transformed model. During the transformation we are composing so called
domains in the matrix on that way that every row(or column) with value d(ii) (or d(wj))
will be substituted with d(ii) (or d(wj)) rows(or columns), where the constrain value of
each row is ’1’. Therefore the 1× 1 cells, which are in the cross of the d(ii) row and the
d(wj) column, will be replaced by such a domain which consists of d(ii)× d(wj) cells.
In Fig.3.9 the domain composition of the above G(I,W) is visible, where the domains are
marked/surrounded by dotted lines.

Figure 3.9: G(I,W) simplified adjacency matrix transformation to domain representation

In Fig.3.10 the domain transformed matrix representation of the Fig.3.7 examples are
visible. The numbers with blue background mark the related G(I,W) from the examples.

Figure 3.10: G(I,W) examples with domain representation.

Let’s denote the set of all the G(I,W) graphs belong to the same partition of N by
PN,Li

. From the Interval State Space Section we know that i ∈ {1...p(N)}. A partic-
ular Gk(I,W) ∈ PN,Li

expresses the n members sum of two members products, where
the members of the products are from the Li and W sets respectively. Therefore the
Gk(I,W) ∈ PN,Li

determined sum of products can be mapped onto the IMBT state
space. Now I will define the subset of PN,Li

, denoted by P s
N,Li

, according to the following.
P s
N,Li

is that subset of the PN,Li
set, which contains the maximum number of Gi(I,W)

graphs from PN,Li
, so that in the G(I,W) associated transformed matrices regarding the

sum of cells at least in four domains are different for all the (Gi, Gj) i 6= j pairs.

Theorem 3.3.6. |P s
N,Li
| is an upper bound regarding the possible number of IMBT states

belongs to an N → Li partition. Considering the following l1, l2, ...ln lengths and the
s1, s2, ...sn steps. Supposing that there are i elements from both the l’s and s’s where the
associated lengths and steps are equivalent with each other. Additionally there are two
additional j and k number of elements from both L and S within where the associated

45

values are the same and i + j + k ≤ n. Let’s the associated value of the i elements
are vi = 2, vj = 3 and vk = 4. Then there will be such a G1(I,W) and G2(I,W)
bipartite graphs, which identical in every other pairings regarding the member of the
products except the G1 → r1 = ...+ li,i × si,i + lj,1 × sj,1 + ...+ lj,j × sk,1 + lk,1 × sj,j and
G2 → r2 = ... + lj,1 × si,i + li,i × sj,1 + ... + lk,1 × sj,j + lj,j × sk,1. In this case (G1, G1)
pair satisfies the above condition regarding the sum of domains, however the associated
r1 and r1 results are identical, therefore represents the same state of IMBT. � Now we
can word

Theorem 3.3.7. the upper bound of IMBT state space in case of merely N is given and
the same n number of lengths are always sorted into the same tree structure no matter
whatever it is:

IMBTStates(N) = |P s
N,L1
∪ P s

N,L2
∪ ... ∪ P s

N,Lp(N)
| ≤

p(N)∑
i=1

|P s
N,Li
|. (3.4)

In case of the IMBT is completely balanced then the degrees belongs to a particular wi
is equivalent with the corresponding number from the corresponding line of Table-3.3.2.
For instance in case of n = 7 we can identify the third line of Table-3.3.2. Therefore we
know that the number of different weights are 5. And the seven nodes are sorted into five
classes according to the followings d(w1) = 1, d(w2) = 1, d(w3) = 2, d(w4) = 2, d(w5) = 1.

The section relates to Thesis 4.2.2.

3.4 Arrangements Related Conditions, Theorems, and

Equations

By now we know a model in which we can count the average cost of search operation
by simple multiplication of the corresponding values in the contingency table. In the
following, I will define some metrics and through these we will examine the evaluation of
the contingency table.
Let us denote by N the number of keys stored in the IMBT so far just like above. However,
unlike above, to be able to examine the evolution of the number of nodes in the tree, we
introduce a random variable, Vi, which is the instantaneous number of vertices (nodes
previously) in the tree at time instant i, where i ∈ 1...N . It is obvious from the definition
that V1 = 1 and Vi can be mapped to states in a stochastic matrix. The distribution of
the lengths of the intervals is affected by the homogeneity and the finite/infinite nature
of the stochastic matrix.
I define the series of instantaneous average interval lengths by the following formula:

L̄i =
li1 + li2 + ...+ liVi

Vi
, (3.5)

where i is the time instant (i ∈ 1...N) and lik is the length of the interval stored by node
k at time instant i. L̄i is a random variable as well. We assume that for the series of L̄i
the following constraints are true:

• There is an expected value a, to which the individual random variables, ai, stochas-
tically converge to as N tends to infinity, where a = lim

N→∞
(a1 + a2 + ...+ aN)/N .

46

• There is a c = (σ2
1 +σ2

2 + ...+σ2
N)/n independently from N , where σi is the standard

deviation of the interval lengths at time instant i.

• There is a non-negative function r(x) for which r(0) = 1, limN →∞(r(1) + r(2) +
...+ r(n))/n = 0, and additionally |corr(L̄i, L̄i)| ≤ r(|i− j|), i, j ≥ 1.

The conditions mentioned above together constitute the Bernstein-theorem [64]. Accord-
ing to the theorem, if the three constraints are simultaneously met, then the weak law of
large numbers is true.
Using the Bernstein theorem as a starting point, we can identify two types of completely
different input pattern classes, for which the behavior of contingency tables is examined
and the cost of average search operation is determined:

• In the first case only a nonrecurring, transient, infinite state stochastic matrix can
be composed based on the associated states Vi. Additionally we assume that the
Bernstein-theorem is true for the series of L̄i,

• In the second case, we assume that based on the state Vi, it is possible to create
a stochastic matrix which has a finite state-space, is aperiodic, irreducible (that is
ergodic), and recurrent.

The satisfaction of the first criterion implies that the average interval length is upper
bounded. As a result, the variance of the interval lengths is also upper bounded, therefore,
the scenario in which we have a composition of a large interval with continuously increasing
length with increasing number of small ones, is not valid. Rather, asN increases, there will
be an increasing number of gaps between the intervals, associated with permanently miss-
ing keys, that is, keys where the probability of arrival of the associated packet converges to
zero. Both from the previous fact and from Equation (3.5) it is obvious that Vi is propor-
tionally increasing as well. The satisfaction of the second criterion implies the presence of
temporary gaps only: in spite of the increasing N the finite number of nodes implies that
the instantaneous average interval length is increasing, that is the number of gaps is upper
bounded. *During the deductions, it is assumed that any key has the same probability to
be searched for. That is P (the key we are looking for is km) = 1

N
, where m ∈ (1...N).

3.4.1 Permanent Gaps

In the case of permanent gaps, the mean of the average interval length is a constant value,
a. We do not exclude the possibility of having temporary gaps, due to the out-of-order
arrival of packets. As a result, the header d(ii) in the associated contingency table will
follow a kind of distribution. Taking into account the effect of temporary gaps in the
analysis would make the analysis more complex, but their effect is minor, therefore they
will be discarded in the subsequent.

Linked List Arrangement

In this realization, our additional assumption against the keys is that there is a smallest
one. The tree degenerated into a linked list and three associated contingency tables with
Vi = n = 3, Vi = n = 7 and Vi = n = 15 are shown in Figure 3.11.

47

Figure 3.11: Linked list degenerated IMBT and three associated contingency tables.

Theorem 3.4.1. In the case when there is no shuffling and no balancing at all, the tree
degenerates to a linked list and

A(N, a) =
N

a
+
a− 1

a
. (3.6)

From the contingency table, it is clearly visible that the wi follows the sequence of odd
numbers and d(wi) remains constant. Proof of Theorem 3.4.1: Every node contains
two keys, since a node covers an interval and the keys represent the borders of that
particular interval. Let us assume that a node in the tree covers a keys on average. Then
we can denote by ki the starting key and by ki+ (a−1) the ending key. Additionally, due
to the non-overlapping feature of IMBT, it is also trivial that (ki + a − 1) < ki+1. First
let us see the a = 1 case. In this case in the linked-list degenerated data structure the
starting and the ending keys are equal. As a consequence: if the key to be searched for
is not equal with ki then the second comparison with the right value of that particular
node is necessary but, due to ki == ki + a− 1, the outcome of the comparison is always
false. Since the number of the nodes is n = N/a, and here a = 1, therefore n = N . Based
on this, we can write that the average cost of SEARCH is equal to the expected value:

A(N) =
1

N

n∑
i=1

(2i− 1) =

=
1

N

[
2
n(n+ 1)

2
− n

]
= N.

(3.7)

Now, we examine the a ≥ 2 case. It is still valid that n = N/a. Analogous to the previous
deduction we can write that the average cost of the SEARCH operation is:

A(N, a) =
1

N

n∑
i=1

(2i− 1) + 2i(a− 1) =

=
1

N

[
n(n+ 1)− n+ (a− 1)n(n+ 1)

]
=

=
N + a− 1

a
=

=
N

a
+
a− 1

a
.

(3.8)

It is visible that substituting 1 into a we will return Equation (3.7). An additional
consequence is that as a grows the equation tends to:

N

a
+
a− 1

a
≈ N

a
+ 1. (3.9)

With the deduction above, Theorem 3.4.1 is proved. �

48

Completely Balanced Arrangement

We assume a completely balanced tree with the number of node power of 2, that is
n = 2l − 1. Three associated contingency tables with Vi = n = 3, Vi = n = 7 and
Vi = n = 15 are shown in Figure 3.12.

Figure 3.12: Completely balanced IMBT and three associated contingency tables.

Theorem 3.4.2. With the above conditions, the average cost of the search operation can
be expressed with the following formula:

A(N, a) =
3

2
log2

(N
a

+ 1
)

+
3a

2N
log2

(N
a

+ 1
)
− a+ 1

a
. (3.10)

As is visible from the figure and as we have proven in 3.3.2, the balancing has a typical
fingerprint in the d(wi) distribution: It follows the Fibonacci sequence until the middle
of the rows on the way from the top rows to the bottom rows. Supposing that N >> 0,
and a > 0. Then we can apply the following simplification on Equation (3.10):

A(N, a) ≈ 3

2
log2(

N

a
) =

3

2
log2(N)− 3

2
log2(a) = (3.11a)

= log2(N) +
1

2
log2(N)− 3

2
log2(a). (3.11b)

That is, an IMBT with the given criteria will outperform a BST as long as the difference
of the second and third term is negative, in other words, provided that:

a >
3
√
N (3.12)

49

From now on, the number of layers or levels is denoted by l (in contrast to the previous
notation of lengths). The root node is the l = 1.
Proof of Theorem 3.4.2: Based on our notations we can write that:

n =
N

a
,

l = log2(n+ 1) = log2(
N

a
+ 1).

(3.13)

During the deduction we will use the following identity:

n∑
i=1

i2i = n(2n+1 − 2)− (2n+1 − 4) + (n− 1)2. (3.14)

Based on the relations (Equation (3.13)) we can define the layer level sums:

2i−1 + 2i(a− 1) + (i− 1)2i−23 + (i− 1)2i−23(a− 1), (3.15)

where i means the ith level in the tree. However, this form is not suitable for equal
transformations. Therefore, we split the formula into a fixed member which is the first
node and the layer level members. Due to this split we will use an incremented i and the
counter in the sum will last to l − 1 instead of l:

A(N, a) =
1

N

[
1 + 2(a− 1) +

l−1∑
i

2i + (a− 1)2i+1 + 3i2i−1 + 3(a− 1)i2i−1
]
=

=
1

N

[
1 + 2(a− 1) +

l−1∑
i

2a2i − 2i +
3a

2
i2i
]
=

=
1

N

[
1 + a− a2l − 2l +

3a

2
l2l
]
.

(3.16)

Since

a− a2l =− a(2l − 1) = −N

1− 2l =− N

a

(3.17)

we can write that

A(N, a) =
1

N

[3a

2
l2l −N − N

a

]
=

=
3a

2N
(
N

a
+ 1)log2(

N

a
+ 1)− 1− 1

a
=

=
3

2
log2

(N
a

+ 1
)

+
3a

2N
log2

(N
a

+ 1
)
− a+ 1

a
.

(3.18)

With the deductions above, Theorem 3.4.2 is proved. �

3.4.2 Temporary Gaps

Let us assume in the following cases that it is possible to compose from Vi a finite state
{1...p}, ergodic (aperiodic, positive recurrent), at least partially recurring stochastic ma-
trix. Let us denote by Mj the mean recurrence time in state j. If Mj is finite then state

50

j is positive recurrent. The state j in which the expected return time is the smallest one,
will represent the number of nodes in the IMBT as a steady-state value. Therefore we can
substitute that state with value n = j. Regarding the distribution of the interval lengths,
which are necessarily increasing, we will distinguish two possible realizations.

• In the first realization we suppose that the increasing interval lengths are uniformly
distributed to nodes, the number of which is fixed.

• In the second realization the distribution is not uniform.

Linked List Arrangement

In this subsection, our additional assumption against the keys is that there is a small-
est one, which we may always call first and as time goes by the probability that all the
keys near the first key have already arrived is increasing. Since the gaps are temporary
ones, out-of-order arrival implies there are keys which arrive late, therefore temporary
side-branches might appear over time, outside of the main branch. The length of these
temporary branches depends on the statistics of the out-of-order arrival pattern. Subse-
quent side-branches are not taken into account because their effect is marginal.

Theorem 3.4.3. With the distribution characterized above, the data structure degen-
erates into a linked list. Suppose that the increasing lengths are uniformly distributed
across the nodes. Then, due to the uniformly distributed increasing lengths, the average
cost of the search operation does not depend on N :

A(N, a) = n. (3.19)

Figure 3.11 accurately describes this scenario as well.
In the following, we suppose that the distribution of the lengths is not uniform, but node-
heavy, meaning that every node contains a single key only, except one, which contains all
the remaining N − n + 1 keys. That heavy node can reside at the tail, in the middle, or
at the root of the linked list degenerated tree.

Theorem 3.4.4. Then the average costs of search operations in case of node-heavy ar-
rangements are the followings:

lim
N→∞

Atail heavy(N, a) = 2n. (3.20a)

lim
N→∞

Amiddle heavy(N, a) = n. (3.20b)

lim
N→∞

Aroot heavy(N, a) = 2. (3.20c)

The related arrangements and contingency tables are shown at Figure 3.13 and Figure
3.14 respectively. The proof of Theorem 3.4.3 is easily derivable from Equation (3.9),
with the substitution of n = N

a
:

A(N, a) =
N

a
+
a− 1

a
≈ n+ 1 = C. � (3.21)

51

Figure 3.13: The linked list degenerated IMBT with heavy nodes.

Figure 3.14: The associated contingency tables of linked list degenerated IMBT with heavy
nodes.

The proofs of node heavy cases, Theorem 3.4.4, are the following. According to arrange-
ment a) we can write that n = N/a, and

A(N, a) =
n∑
i=1

2i− 1

N
+ 2n

N − n
N

=

= N
[2a− 1

a2

]
= n

2a− 1

a
.

(3.22)

It is visible from the results that as N and a grow along with n = const. the value tends
to 2n, which is not surprising considering that accumulation is possible merely in the last

52

element. Considering arrangement b) we will get that

A(N, a) =
n∑
i=1

2i− 1

N
+
n+ 1

2

N − n
N

=

=
1

2

N + a− 1

a
.

(3.23)

Comparing the result to Equation (3.21) we can see that the average SEARCH cost is
half of that of the uniformly distributed one. Arrangement c) can be expressed by the
following equation:

A(N, a) = 2
N − n
N

n∑
i=1

2i− 1

N
=

= 2
N − n
N

+
2

N

n∑
i=1

i− (n− 1)

N
=

= 2
N − n
N

+
2

N

(n(n+ 1)

2

)
− (n− 1)

N
=

= 2
N − n
N

+
n(n+ 1)

N
− (n− 1)

N

(3.24)

The result shows that by increasing N , next an n = const., A(N, a) tends to 2:

limN→∞A(N, a) = 2. (3.25)

The proof of Theorem 3.4.4 is completed. �

Completely Balanced Arrangement

Two scenarios are considered:

• The increasing lengths of intervals are uniformly distributed across the tree,

• The distribution of lengths follows an exponential distribution.

The first case is fairly simple. Since the number of nodes is fixed with value n, it is easy
to see the following.

Theorem 3.4.5. considering a completely balanced IMBT the average cost of search
operation is such a constant, which is proportional with the logarithm of n. Based on
Equation (3.11b), considering that a >> 0 (since a increasing infinitely) we get:

A(N, a) ≈ C(n)− 1. (3.26)

From the formula it is visible that, just like in case of Theorem 3.4.3, the A(N, a) is
independent from N .
The other case is a little bit trickier: it depends on the length distribution. Suppose that
the nodes with smaller key values hold the longer intervals, while nodes with the high-
est key values hold the shorter intervals. Additionally, the rightmost interval is always
one. Compensating this constraint without increasing the number of nodes the leftmost

53

interval always absorbs the surplus. We do not give the related formula and the associ-
ated deduction here, but consider the construction of a similar, however, ”more realistic”
arrangement in the next subsection.

The Theorem 3.4.5 can be easily proven based on Equation (3.11b):

A(N, a)
3

2
log2

(N
a

+ 1
)

+
3a

2N
log2

(N
a

+ 1
)
− a+ 1

a
(3.27)

By replacing N
a

with n, and considering that during the examinations n = const.:

A(n = const., a) =
3

2
log2

(
n+ 1

)
+

3

2n
log2

(
n+ 1

)
− a+ 1

a
=

= c1 + c2 −
a+ 1

a
.

(3.28)

As a >> 0 (since a is increasing infinitely) we get the following approximation:

A(N, a) ≈ C(n)− 1.� (3.29)

During the proofs above, we restricted our examinations to such cases where the requested
key has already stored in the data structure. Of course the missing keys would modify
the results: the interval length of the gaps should be considered, instead of the interval
length of the nodes. Here, the weight of the half open intervals should be handled by
care.

An Exception: Completely Balanced Arrangement, Temporary Gaps, Infinite
Nodes and Increasing Average

In this subsection, we introduce an arrangement, where none of the two criteria from
Section 2 hold: the average length of the intervals is increasing, along with the increasing
number of nodes. Our initial assumption is that the interval lengths are exponential
according to power of two. Additionally the longest interval has the smallest left-hand
key value, the second longest interval has the second smallest left-hand key value and
so on. Moreover we suppose that the length of the shortest interval is always 20. Since
we are examining asymptotic results we apply the simplification that only the right side
distances will be taken into account for the determination of the full weight of IMBT.
That is, if the length of an interval is li(= 2i) then, with this approach we weight the
right distances of a node by the full li, instead of li − 1(= 2i − 1). However, it is easy
to see that as N →∞ this difference becomes insignificant. By considering a tree nodes
arrangement and applying the above constraints we obtain interval lengths of 20, 21, 22.
As we stipulated before, the longest interval has the smallest left key value. Therefore,
in a balanced IMBT 22 interval has the distance from the root 3 comparisons (we take
into account the right hand distances). The 21 interval is the root node, therefore, we
count with 2 comparisons. The 1 key interval is in the right side of the balanced IMBT,
therefore to reach the majority of that keys requires 4 comparisons. As we stated before,
during the calculations we assumed that the following conditions are hold:

- Any key can be the subject of the search operation with equal probability,

- The key is already in the tree.

54

Therefore, during the determination of the average cost of search operation, the actually
expected value of comparisons is calculated. According to our assumption the probability
of we are looking for key k is 1/N , where k ∈ {1...N}. Since during the jth comparison
several keys can be found the jth comparisons has to be weighted with the length of the
intervals. According to the above mentioned the A(N) average cost is 1/N multiplied by
the sum of weighted nodes, where a particular weight, which belongs to a single node is
the multiplication of the distance and the length of the interval. The sum of weighted
nodes, that is the total weight, is denoted by TW .
Let us assign the s1, s2 and s3 to the above numbers, respectively. That is, s1 = 3, s2 = 2
and s3 = 4. The approximate value of the total weight of the tree is the following:

TW = s12
0 + s22

1 + s32
2 (3.30)

Now by extending our examination to a n = 7 nodes arrangement, the longest interval
is 26. The comparison weights depend on the lengths and the distances from the root,
therefore in this case we obtain:

TW = (s1+2)20+(s2+2)21+(s3+2)22+(s1+1)20+4+(s2+1)21+4+(s3+1)22+4+(s2+0)23

(3.31)
From the above two equations we can formulate the recursive extension/composition rule:
Take the given expression which is valid for n nodes. To determine the 2n + 1 nodes
arrangement, first copy the whole formula and increase by 2 the multipliers of the powers.
Then add the formula with the multipliers increased with one and powers increased by
2. According to modification 2, increase the multiplier values by 1. Additionally, add the
corresponding base 2 value to the exponents. Finally add the missing new root member
to the expression. To make it more understandable, here we give an extension of Equation
(3.31).

TW = (s1 + 2 + 2)20 + (s2 + 2 + 2)21 + (s3 + 2 + 2)22+

+ (s2 + 0 + 2)23 + (s1 + 1 + 2)20+4 + (s2 + 1 + 2)21+4 + (s3 + 1 + 2)22+4+

+ (s1 + 2 + 1)20+8 + (s2 + 2 + 1)21+8 + (s3 + 2 + 1)22+8+

+ (s2 + 0 + 1)23+8 + (s1 + 1 + 1)20+4+8 + (s2 + 1 + 1)21+4+8 + (s3 + 1 + 1)22+4+8+

+ (s2 + 0 + 0)27.

(3.32)

This is such a recursive rule, that it affects both the multipliers and the exponents. The
related contingency table is shown in Figure 3.15. In the figure, we indicated the number
of steps that are required to achieve the interval opening keys, instead of the closing.
That is, every weight associated values in the column are shifted by one. Based on the
figure and Equation (3.32) we can say that

d(w1) = 1, where w1 = (s2 + 0 + 0) = 2

d(w2) = 1, where w2 = (s2 + 0 + 1) = 3

d(w3) = 2, where w3 = (s2 + 0 + 2) = (s2 + 1 + 1) = 4

d(w4) = 3, where w4 = (s2 + 1 + 2) = (s2 + 2 + 1) = (s1 + 1 + 1) = 5

(3.33)

etc.
Since the average length of the intervals is strictly tied to N , the average cost of search
operation is depending exclusively on N , that is

A(N) =
1

N
× TWN . (3.34)

55

Figure 3.15: The contingency tables of IMBT where all the interval lengths are different.

The section relates to Thesis 4.2.2.

3.5 Arbitrary Distribution - The Matrix Represen-

tation

Even though the tree can be made fully balanced, there is no control on the sizes of the
intervals which depend entirely on the arrival pattern. In other cases such formulas exist
but are difficult to evaluate for instance: such is the case when the interval lengths are
in a geometric progression, for which the closed formula is hard to evaluate and it does
not give any insight regarding the computational complexity. In order to gain a formula

Figure 3.16: IMBT coloured distribution of traversal related weights

for a generic case, I will introduce a formula for constant interval sizes and generalize
further from that. To evaluate the complexity of search for constant interval sizes, we
propose to count the number of distinct comparison operations for each node in the tree
according to Fig.3.16, assuming the search stops in the respective node. Then we weigh
the number of comparisons for the particular nodes with the size of the interval covered

56

by the particular node, assuming that the likelihood for the search to end in one of the
nodes is proportional with the size of the respective interval.

We can arbitrarily choose the left or the right side of the intervals. Let’s first choose
their left side.

In Fig. 3.17 we show the cardinality of distinct comparison operation counts per node
for the levels of a fully balanced tree. It turns out that the distinct counts are exactly the

Figure 3.17: Binomial distribution of the traversal related weights in IMBT

numbers from Pascal’s triangle, in the increasing order of the levels of the tree. Therefore
the numbers of distinct counts are exactly the binomial coefficients:

h∑
k=0

k∑
j=0

(
k!

j!(k − j)!

)
=

h∑
k=0

k∑
j=0

(
k

j

)
, (3.35)

supposing that the root level is marked by zero. Assuming intervals of size one, when
in fact the left and right hand comparisons fall into one single comparison, the distinct
numbers of counts need to be weighed by the counts themselves, therefore the total weight
becomes:

TWh =
h∑
k=0

k∑
j=0

(
k

j

)
(j + k + 1). (3.36)

Supposing that the interval lengths can be characterized with an average value a, then
we can rewrite the formula into the following one:

TWh =
h∑
k=0

k∑
j=0

(
k

j

)
(j + k + 1)(a− 1). (3.37)

As the intervals increase with the arrival of packets, the right side comparisons in the
nodes will be with a factor of the interval size - 1 more times executed than not, therefore

57

the total weight can be better approximated with:

TWh =
h∑
k=0

k∑
j=0

(
k

j

)
(j + k + 2)(a− 1). (3.38)

However, in this form of the formula it is still impossible to express the search complexity
for intervals with arbitrary lengths.

3.5.1 The Matrix Representation

In the following we will transform the total weight to a format suitable for expressing it
in a matrix form that will allow us to consider intervals of arbitrary length. We consider
again the left sides of the intervals. The numbers of distinct counts in the first level can
be rewritten as:

3∑
i=2

i = 1× 2 + 1× 3 = 5 (3.39)

The second level can be rewritten as:

2∑
j=1

3∑
i=2

(j + i) = 1× 3 + 2× 4 + 1× 5 (3.40)

The corresponding expressions for the 3rd and 4th level are:

2∑
k=1

2∑
j=1

3∑
i=2

(k + j + i) = 1× 4 + 3× 5 + 3× 6 + 1× 7 (3.41)

2∑
l=1

2∑
k=1

2∑
j=1

3∑
i=2

(l + k + j + i) = 1× 5 + 4× 6 + 6× 7 + 4× 8 + 1× 9 (3.42)

From the pattern we can recognize that this representation still follows the binomial
coefficients regarding the distributions of the weights. Let’s apply the following equivalent
transformations:

3∑
i=2

i = 1× 21 + 1× 31 = 5 (3.43)

2∑
j=1

3∑
i=2

(j + i) = 5× 21 + 3× 21 (3.44)

2∑
k=1

2∑
j=1

3∑
i=2

(k + j + i) = 5× 22 + 3× 22 + 3× 22 (3.45)

2∑
l=1

2∑
k=1

2∑
j=1

3∑
i=2

(l + k + j + i) = 5× 23 + 3× 23 + 3× 23 + 3× 23 (3.46)

58

We can recognize the following generalized rule from the transformations above:

Wj = (5 + (j − 1)3)2j−1, (3.47)

where Wj is the weight related to level j of the tree and root is level 0.

TWh = 1 +
h∑
i=2

(5 + (i− 2)3)2(i−2). (3.48)

And finally, considering interval lengths bigger than one:

TWh = (a− 1)

(
1 +

h∑
i=2

(5 + (i− 2)3)2(i−2)

)
(3.49)

(3.43), (3.44), (3.45) can be rewritten in a matrix form, as described below:

W1 =
[
1 1

]
×
[
2
3

]
×
[
1
]

(3.50)

W2 =
[
1 1 1 1

]
×

1 2
1 3
2 2
2 3

× [11
]

(3.51)

W3 =
[
1 1 1 1 1 1 1 1

]
×

1 1 2
1 1 3
1 2 2
1 2 3
2 1 2
2 1 3
2 2 2
2 2 3

×

1
1
1

 (3.52)

We introduce the following notations: the first factor is called interval length vector and
the second factor is called weight matrix. Additionally let 1p = [11 12 ... 1p]

T . In this new
representation we can recognize that the weight matrix corresponding to level k of the
IMBT can be evaluated with the following recursive formula:

Wk+1 =

[
12k Wk

212k Wk

]
(3.53)

To generalize from intervals of length 1 to intervals of length a across all nodes, the in
interval length can be introduced in the interval length vector (ILV) in the following way,
for the 2nd level of the tree taken as an example:

[
(a− 1) (a− 1) (a− 1) (a− 1)

]
×

1 2
1 3
2 2
2 3

× [11
]

(3.54)

At this point we can generalize from intervals of constant length to arbitrary intervals at
every level and in every individual node by replacing the element of the interval length

59

vector at the particular level with the appropriate interval length. As an example we
express the geometric progression based interval lengths with the help of the matrix
representation.

TW3 =

=
[
214 212 210 28 26 24 22 20

]
×

1 1 2
1 1 3
1 2 2
1 2 3
2 1 2
2 1 3
2 2 2
2 2 3

×

1
1
1

+

+
[
213 29 25 21

]
×

1 2
1 3
2 2
2 3

× [11
]

+

+
[
211 23

]
×
[
2
3

]
×
[
1
]

+

+ 27.

(3.55)

The Total Weight can be expressed in a more compact form if we use interval matrices
(IM) instead of interval length vectors, along with utilizing only the weight matrix of order
k. Interval matrices can be defined as the Hadamard product (or element-wise product
’◦’) between a coefficient matrix and the interval vectors arranged in a convenient form,
the interval arranged matrix (IVA). The coefficient matrix has with one less as many
rows as there are levels in the IMBT. The first row consists of ones. The first half of the
second row consists of 2-s, the second half consists of -1-s. The third row has 2-s and -1-s
in the first and fourth quarter, the rest is 0-s. The next row has 2-s and -1-s in the first
and last eighth and zeros in the rest, and so on. Finally the last row consists of two 2-s
at the beginning, two -1-s at the end and zeros in the middle. The coefficient matrix is a
k − 1 by 2k−1 matrix, where k is: (the number of levels in the IMBT) - 1.

Ck =

12k−1

T

2× 12k−2
T −1× 12k−2

T

2× 12k−3
T 02k−2

T −1× 12k−3
T

...
2 2 02k−1−4

T −1 −1

 (3.56)

The IVA matrix is a k− 1 by 2k−1 matrix like the coefficient matrix, in which the interval
length vectors are represented in the following way: the interval length vector of the last
level represents the first row, the second row consists of the interval length vector of the
previous level written twice and so on. The last row contains the first interval length
vector, representing the level below the root, written (k − 1)/2 times, as below:

IV Ak =

ILVk−1

ILVk−2 ILVk−2
. . .

ILV1 ILV1 ... ILV1

 (3.57)

60

The characteristic matrix is obtained as the Hadamard product of the coefficient matrix
and the interval arranged matrix, multiplied with the weight matrix with an ordinary
matrix multiplication:

Chk = (Ck ◦ IV Ak)×Wk = IMk ×Wk (3.58)

The characteristic matrices of balanced IMBT-s with interval length 1 with 2, 3 and 4
levels are shown in the following:

[
1 1

]
×
[
2
3

]
=
[
5
]

(3.59)

[
1 1 1 1
2 2 −1 −1

]
×

1 2
1 3
2 2
2 3

 =

[
6 10
0 5

]
(3.60)

1 1 1 1 1 1 1 1
2 2 2 2 −1 −1 −1 −1
2 2 0 0 0 0 −1 −1

×

1 1 2
1 1 3
1 2 2
1 2 3
2 1 2
2 1 3
2 2 2
2 2 3

=

12 12 20
0 6 10
0 0 5

 (3.61)

For IMBT-s discussed earlier with interval lengths showing an exponential distribution
the respective coefficient matrices are:[

22 20
]

[
26 24 22 20

2× 25 2× 21 −25 −21

]
 214 212 210 28 26 24 22 20

2× 213 2× 29 2× 25 2× 21 −213 −29 −25 −21

2× 211 2× 23 0 0 0 0 −211 −23

(3.62)

61

and the (3.62) related characteristic matrices up to size 5 are shown below:[
11
]

[
90 187
0 70

]
21930 23130 48059

0 8772 17990
0 0 4120

1431677610 1437226410 1515870810 3149642683
0 572671044 574890564 1179010630
0 0 134746128 270012440
0 0 0 16777600

(3.63)

The characteristic matrix, despite being only a snapshot of the state of the tree at a
particular time instant, represents a standalone piece of information that can be utilized
to analyze the behavior of the tree.

3.5.2 Model Refinements

As the intervals increase with the arrival of packets, as mentioned earlier, the right side
comparisons in the nodes will be almost always executed - in fact with a factor of the
interval size - 1 more times executed than not. To express this in the model we have to
replace the initial ’2’ to ’3’ and the ’3’ to ’4’ in (3.53) and thus we arrive to the following:

[
3
4

]
⇒

1 3
1 4
2 3
2 4

⇒

1 1 3
1 1 4
1 2 3
1 2 4
2 1 3
2 1 4
2 2 3
2 2 4

(3.64)

The traversal strategy of the tree is the order in which we go from node to node and
the order in which we check against the left side and the right side of the intervals the
concrete key we are looking for. In this context we differentiate left-side-first strategies,
when the left side of the intervals is checked against first, and right-side-first strategies,
when the right hand of the intervals is checked against first. We additionally assume
that the tree is traversed from up towards the bottom and from left to right, as shown
in Fig.3.16. Traversal strategies may be important means to increase the efficiency of
accessing the tree, especially in the case under discussion, in which packets usually arrive
in the increasing order of their sequence number, except for some outliers. In such a case,
when we additionally assume all the keys bigger than a defined smallest sequence number,
the right-side-first traversal is more efficient. The right-side-first traversal strategy can be

62

encoded in the weight matrices under the form of a horizontal mirroring:

[
4
3

]
⇒

2 4
2 3
1 4
1 3

⇒

2 2 4
2 2 3
2 1 4
2 1 3
1 2 4
1 2 3
1 1 4
1 1 3

(3.65)

In this case for the correct computations, the interval coefficient matrices need to be
vertically mirrored. Another effect of mostly in-order arrival is that the tree will not
be perfectly balanced. This effect be taken into account through virtually balancing the
tree with nodes having interval length of zero. In the matrix representation this can be
translated into height supplemented matrices. This makes the analysis more convenient
compared to previous approaches. An example of virtually balanced tree with virtual
intervals of length 0 is shown in Fig.3.18.a). In the figure we show only the lengths of
the intervals L1, L2, L3, ... rather than their left and right extremes. The supplemented

Figure 3.18: a) IMBT balancing imperfection in incremental environment. b) Supplemented
IMBT for equivalent numerical simulations

IMBT is shown in Fig.3.18.b). In the matrix description the virtual intervals of length 0
are encoded into the interval length matrix.

[
0 0 1 1
2 2 −1 −1

]
×

1 3
1 4
2 3
2 4

 (3.66)

0 0 0 0 1 1 1 1
2 2 2 2 −1 −1 −1 −1
2 2 0 0 0 0 −1 −1

×

1 1 3
1 1 4
1 2 3
1 2 4
2 1 3
2 1 4
2 2 3
2 2 4

(3.67)

63

An additional advantage of the matrix representation relates to the mirroring of the
interval lengths in the tree. If we assume the distribution of the interval lengths to still
following the geometric progression, but for some reason the keys will arrive in decreasing
order, then the nodes on the left side of the tree will cover shorter intervals than the ones
on the right side. This change can be easily expressed by swapping the order in which
the coefficients are inserted into the interval length tree, as shown below:[

20 22
]

[
20 22 24 26

2× 21 2× 25 −21 −25

]
 20 22 24 26 28 210 212 214

2× 21 2× 25 2× 29 2× 213 −21 −25 −29 −213

2× 23 2× 211 0 0 0 0 −23 −211

(3.68)

3.5.3 Experimentation results

In the following we compare the results of the closed formula (3.11b) with the results
from numerical simulations for the total number of keys taken from the following set:
N = 2n − 1, where n represents the number of nodes in the balanced IMBT taken from
the set n = 3, 7, 15, 31 respectively. In case of the closed formula the average interval
lengths are a = 2.33, 18.14, 2184.46, 69273666.03. We considered both traversal variants,
so (3.53) was the starting point, where the weight matrices from both (3.52) and (3.64),
were considered. As a starting point we considered intervals of constant length. In the next
step we evaluated the search complexities for interval lengths that represent a geometric
series. Matrices of the form (3.68) are referred to as right weighted and those from (3.62)
are referred as left weighted. The evaluated search complexities according to the distinct
approximations described earlier are summarized in Table - 3.3, where ’lsh’ refers to
left-side-heavy, ’rsh’ refers to right-side-heavy and ’ave’ refers to uniform interval length
distributions. 2-3 and 3-4 denote left- and right-hand-side first traversals. It is visible that

Table 3.3: Comparison of Formula (3.11b) and Matrix based computations

N = 7 N = 127 N = 32767
N =

2147483647
Nodes 3 7 15 31
Approximate
formula

2.37 4.21 5.86 7.43

2-3 lsh 1.85 2.79 3.78 4.78
2-3 ave 1.99 3.14 4.39 5.74
2-3 rsh 2.28 4.02 6.00 7.99
3-4 lsh 2.57 3.79 4.78 5.78
3-4 ave 2.99 4.14 5.39 6.74
3-4 rsh 3.28 5.02 7.00 8.99

the search complexity has a logarithmic dependence on the number of nodes. It can also

64

be seen that the traversal strategy has a significant effect on the search complexity, up to
almost 50%. In the following we evaluate the search complexity in the case when interval
lengths follow the geometric progression. This might occur in realistic scenarios, where
for instance there is a temporary packet loss in the network. In order to formulate more
general conclusions we have chosen several different bases for the geometric progressions.
The series of intervals were selected/generated according to the following procedure: we
chose the following set of bases, B = {bi} = {1.2, 1.5, 2, 2.2, 2.5, 3, 3.2, 3.5, 4, 4.2, 4.5,
5, 5.2, 5.5, 6} and the set of possible number of nodes, n = {3, 7, 15, 31, 63, 127, 255}. We
chose the total number of keys from a set Ni of size 1000 but spanning several orders
of magnitude, Ni ∈ {1.09121, 1.09122, ... 1.09121000}. The procedure of selecting the
concrete values for Ni were such that the following condition is satisfied with respect
to 2 consecutive values from the set B: Ni×(bi−1)

b
ni
i

≥ 1 and Ni×(bi−1)
b
ni+1
i

< 1. By choosing

this selection the asymptotic deviation from the original N tends to zero but still the
IMBTs can be considered balanced. The numbers from the set B are not integers but
in practical cases interval sizes are multiples of tens of the base vectors, therefore this
does not matter. In Fig.3.19 the average cost of search operation is presented for interval

Figure 3.19: Node cardinality and the cost of search as a function of the base of the geometric
progression. Darker areas indicate higher search operation cost. The lighter numbers indicate
more nodes

sizes in a geometric progression as a function of the base of the geometric progression and
the number of nodes. Darker areas indicate more elevated search costs. These typically
occur for cases when intervals are shorter and more nodes are required to store the same
number of keys. The white/empty areas are gaps for which the procedure did not find
interval series that match the selection criteria.
In Fig.3.20 we present more detailed results for the lower and upper bound of the base
values and a value from the middle. The figures show the number of nodes as a function
of the total number of keys. The diameter of the circles is proportional with the cost of
search for the particular balanced IMBT instance. From figures 3.20 a) - c) it is visible,
that for interval sizes that represent geometric progressions the relation between N and

65

Figure 3.20: Number of nodes and cost of search for geometric progression with a) base = 1.2
b) base = 3.2 and c) base = 6

n can be expressed by n(N) = logb(N). Additionally the relation between the number of
nodes n and the cost of search operation A is A(n) = log2(n). That is, the trend is:

A(N) = log2(logb(N)) (3.69)

It can be seen that the slope of the dependency decreases with the increasing b base of
the geometric progression.
We can formulate now the following theorem.

Theorem 3.5.1. consider a snapshot about the left weighted geometric progression based
interval lengths with instantaneous ’b’ base. Then there is always a series of logical time
dependent b(t), where b(t0) = b, such that the instantaneous ’n’ number of nodes become
constant, therefore ’A(N)’ is upper bounded.

66

Proof. To show that, we replace ’t’ with ’N ’, as a ’logical’ time, and rewrite the logarithm
in the following equivalent form:

logb(N) =
logx(N)

logx(b)
= n = const.

logx(b) =
logx(N)

const.
=
logx(N)

n
,

be(N) = x
logx(N)
const. = x

logx(N)
n ,

(3.70)

where x is arbitrary. That is A(N) ≤ 2×log2(logbe(N)(N))+1 = 2×log2(n = const.)+1 =
c1. �

Consequence: Let b(N) the values of bases over time of an IMBT. Based on the be(N)
value the following cases should be examined:

1. if the d(N) = |be(N) − b(N)| ≈ 0, that is, the distance stochastically converges to
zero,

2. if the d(N) = |be(N)− b(N)| ≈ | ne
√
N − nne

√
N |,

3. if is there always an Ni such that d(N) tends to ∞ faster than the | ne
√
N − nne

√
N |

function for any two arbitrary selected but fixed ne, nne.

The first case represents a dynamic equilibrium: the number of nodes fluctuates around
an n = const. During the second case another, nne dynamic equilibrium exists, which
differs from the instantaneous ne. According to the third case there is no dynamic equi-
librium: there is always a threshold Ni such that N >> Ni then d(N) tends to ∞ faster
than the | ne

√
N − nne

√
N | for any two arbitrary but fixed ne, nne.

We can generalize Theorem-3.5.1, and give a sufficient condition regarding the dynamic
behavior of the tree. Let’s consider all the nodes in an IMBT with arbitrary interval
length distribution. Sort them ascending/descending order regarding their interval length
independently from their original position in the tree.

Theorem 3.5.2. If the ratio of the interval length ordered nodes can be statistically
proximated with the series of N dependent b(N) based geometric progressions such that
d(N) = |be(N)− b(N)| ≈ 0, that is d(N) stochastically converges to zero, then the tree is
in a dynamic equilibrium state.

The proof is identical with the previous one.

The section relates to Thesis 4.2.4.

3.6 Packet De-duplication in Distributed Environ-

ment

Stream processors, like Storm [6] or Flink [65], are frequently employed in distributed,
computing-intense applications with data parallelism and data locality features. They are

67

typically high throughput, long-running systems, therefore they need to automatically or
semi-automatically scale and handle processing node failures.

In horizontal scale-out new nodes are added to the distributed system and the system
state is synchronized from incumbent nodes to the nodes added in the scale-out procedure
[66]. Failure scenarios are mitigated via replicas that help additionally with the distri-
bution of the load between instances holding the same replica [67]. Between replicas a
synchronization is needed. So synchronization is required both for scale-out and failure
mitigation procedures.

We assume a long running application in which streams of (key, value) pairs are
processed by a distributed system, typically a stream processing engine, and stored in a
persistent storage system and there needs to be a guarantee that a particular key-value
tuple is not stored twice.

Duplication can be avoided at the time of insertion to the storage. A well known
and widely applied data structure, which makes possible the filtering during the insertion
is called Merkle-Tree [68], which is a hash of hashes and the basis of many distributed
key-value store. Another insertion time duplication filter method and data structure is
the Log Structured Merge - LSM, [69], where a so called out-of-place update procedure
is implemented. This solution is very popular in modern data stores, like Big Table,
HBase, Apache Cassandra, etc. Since the original implementation several more optimized
variants are appeared, like bLSM [70], where the authors through a combination with a
B-tree are enhanced the speed of read operation.

Insertion-time avoidance can be expensive, therefore duplication avoidance can take
place in a logical layer preceding the insertion. There are various possible solutions for
pre-insertion duplication avoidance. One solution could be storing the keys upon arrival
in an in-memory Distributed Hash Table (DHT). One realization is the so-called CHORD
[61]. This solution works up to a point where the increasing storage requirement and the
possible need to re-hash become a bottleneck. In my initially examined case the keys were
composed of a fixed number of attributes (attribute-based naming), where we could set up
a distributed, rule based association method such that the same sequence number being
allocated to the same key, independently on the concrete node performing the association.
This is a simpler sort of linearisation compared to e.g. the Hilbert space-filling curve [71]

Here I extend the concept of IMBT to a distributed scenario, where eventual consis-
tency [72] is provided.

Regarding synchronization from the naive message flooding approach (every incoming
key triggers a broadcast message) several sophisticated methods have been worked out
for (key) synchronisation purposes, [73], [74]. However, the conditions are required for
optimal operation in the indicated references differ from our dense key-space.

3.6.1 Synchronization Methods

In the context of an Extract Transform Load (ETL) environment that usually involves one
type of stream processing framework, we assume a layer of P equivalent data processing
nodes with the task to persist data to a permanent storage. Each processing node receives
packets with a sequence number. The previous layer is the source of data packets and
chooses the data processing node based on a shuffle grouping policy, playing also the

68

role of a load-balancer. In this way each entity from the considered layer has a similar
processing load, even if the time required to process a packet can vary between packets.
Packets may arrive out of order, may get duplicated or lost in the process of transmission.
In case of a grouping strategy different from shuffle grouping, the individual nodes could
implement an IMBT, independently from the rest of processing nodes and the working
assumption would be that sequence numbers of the packets arriving to a particular node
increase at a rate of P . In case of shuffle grouping a duplicated packet may arrive to a
different node than the previous instance of the same packet. Therefore an individual
IMBT is not enough to filter out duplicates.

Centralized IMBT

The baseline solution is another type of processing node that keeps track of the IMBT of
the entire system. We may call this node the IMBT proxy. Each processing node has to
contact the IMBT proxy at every received packet to check whether the packet has arrived
already or not in order to update the tree. In case when rate P is high, the IMBT proxy
quickly becomes a bottleneck.

Synchronization with full IMBT

An efficient distributed solution is to circulate the full IMBT in a circular fashion so that
the IMBT arrives back to the sender node after exactly P steps, that is P tree merging,
Fig 3.21. To be able to detect the fact of duplication we have to introduce a new term,

Figure 3.21: Circulating the sync IMBT for Synchronization Purposes

the absorption counter, and distinguish two types of IMBT, a node local IMBT and the
travelling one, the so called sync IMBT. Every time when the sync IMBT arrives to
a particular node two identical IMBTs will be composed (a new node local and a sync
IMBT) by the merging of the two IMBTs into one. When the new sync tree is departing
from the actual processing node the total number of keys covered by the IMBT is saved
into the absorption counter. At the point when the IMBT instance returns to any sender

69

which was visited before, the received sync tree is merged with the local tree available
at that point in time. If there was no duplication, the amount of overlapping keys is
equivalent with the value that was stored in the absorption counter when the sync tree
was sent out. If the amount of overlapping keys are higher than the absorption counter, it
means there are packets that arrived to this node, but prior to that they arrived already
to another node.

Definition 3.6.1. The period of time required for the sync tree to be processed exactly
once by all processing nodes is called transactional delay.

Corollary 3.6.0.1. The transactional delay is the cost of a traversal between the pro-
cessing nodes through a directed Hamiltonian cycle.

To be able to determine the gain provided by the IMBT approach we have to consider
the followings. Let the number of keys covered by the local IMBT1 be NI1 and the number
keys covered by sync IMBT be NS. Let’s assume that all the keys would be individually
stored in a BST . According to the assumption all the keys are traveling to such nodes
where all the keys are stored, that is NI1 ≈ NS. With these condition the merging of
the two BSTs would require O(NI1 +NS) operations, [75]. Let’s denote by v the number
of vertices in an IMBT and by a the average number of keys covered by a vertex. Then
N = v × a.

Theorem 3.6.1. With the above notations the required number of steps to merge two
IMBTs is O(vI1 + vS).

By using the same a for both the sync tree and local tree as a rough approximation
we get that NI1 = vI1 × a and NS = vS × a. Therefore we can formulate the following
theorem.

Theorem 3.6.2. By using IMBTs during the merging the procedure takes a = NI1/vI1
times less steps than by using any balanced BST, which explicitly contains all the keys.

Based on the evolution of a over time, that is a(t) or a(N), we can get various results
regarding the gain. Since key sources are usually not perfectly ideal some of the keys are
disappearing permanently and the gap remains forever in both sync IMBT and the local
IMBTs as well. This fact might result a continuously increasing sync IMBT, which is not
feasible.

Since we do not keep the whole track of the evolution of the IMBT during the trans-
actional delay

Theorem 3.6.3. By the circulation of the full IMBT for synchronization purposes only
the fact of duplication can be detected without the exact identification of the duplicated
keys.

Due to the lack of precise identification we are not able to perform any kind of late
correction. That is, it makes no sense to delay the write out procedure through the
maintenance of a temporary buffer area in order to perform a late correction. Therefore
in Synchronization with Differential IMBT we introduce another approach, where the time
complexity might be higher, along with the same key distribution, however the duplicated
keys can be exactly identified, and the size of sync IMBT would not increase over every
limit due to permanent gaps.

70

Synchronization with Differential IMBT

The basic idea is to avoid the circulation of the full IMBT and circulate only the difference
of the local tree and the incoming sync tree instead. The motivation behind this approach
becomes evident when the gaps on the body of originally contiguous series of keys get
permanent: in such cases an increasing number of nodes should circulate, in contrast with
the perfectly idealistic scenario in which the number of nodes in sync IMBT (vsync) is
tending towards an e expected result, and e might be one as a best case. However, with
this technique only the same (along a full Hamiltonian circle) packet duplications of 1,
2 or a multiple of 2, can be detected at all.In order to detect and identify every packet
duplication, we propose three IMBT variants: an active tree, an archive tree and a sync
tree. Actually the absorption counter is replaced by a more complex data structure, that
is with an IMBT. Regarding the implementation there are at least two solutions. In the
first solution both the active and the archive trees are full ones. The archive tree is a
snapshot of the active tree created at the time instant when the sync tree leaves this node
towards the downstream node. The sync tree sent out by this particular node towards
the downstream node is the union of the difference of the sync tree and the archive tree
and the difference of the active tree and the archive tree of this particular node. That is,

sync treeout = (sync treein \ archive tree) ∪
(active tree \ archive tree)

(3.71)

Assuming that keys are duplication-free, then during the union operation the subtracted
trees are in principle void of overlaps, at the maximum they can have keys that are con-
secutive. The overlaps resulting from the union operation will indicate precisely the keys
that are duplicate.

In the second implementation the active tree contains only the keys collected during
the transactional delay. In this case the new sync tree can be evaluated subtracting the
archive tree from the sync tree, merged with the result of the subtraction of archive tree
from the active tree. That is,

sync treeout = (sync treein \ archive tree) ∪
(active tree \ archive tree)

(3.72)

One can realize that the same operations are performed again as in case of Formula 3.71.
The new archive tree is equal with the merging of the sync treeout and the original archive
tree. In parallel the active tree can be flushed out. The sync tree is sent out to the next
node and the cycle of operations is repeated there. Again, just like in the previous case,
the duplicated keys can be identified during the second and third operations of Formula
3.72. Therefore, in contrast to full IMBT circulation, in the implementations introduced
above it might worth to maintain a temporary buffer area in order to perform late cor-
rections preceding the write out function.

The costs of the above operations can be determined according to the followings.
The role of the sync tree in both cases is the same. Originally it collects the newly
arrived keys and spreads them to other processing nodes. If we suppose that the keys are
uniformly distributed due to the load balancing, then from IMBT performance point of
view the worst case would be that the keys are not consecutive at all. This situation really

71

may occur at the beginning, however as the sync tree continues visiting more and more
processing nodes, the intervals are getting longer and longer, supposing that the source
is really of incremental type. Then, independently from the approaches above we may
use a key distribution and number of nodes dependent average length, denoted by async.
According to first implementation varch ≈ vact and either vsync � varch or vsync � varch.
According to second implementation vsync ≈ vact and either vsync � varch or vsync � varch.
In an asymmetric environment like described above it is worth to apply the traversal based
linearisation and any set operation between the data structures with approximately the
same number of elements. However, between those data structures in between there is
at least one magnitude of order regarding the number of elements, making IMBT-based
searches much more efficient to apply. Considering the first implementation approach
one can say that during the determination of synctreeout two parallel operations can be
performed. The first is the set-minus where, according to our assumption, vsync � varch.
Therefore the costs of the parallel operations are respectively O(vsync × log(varch)) and
O(varch + vact), [75]. Additionally to get sync treeout the union of the two is required,
which is O(vsync + vsync). Here we used the fact that the difference between arch tree and
act tree is a kind of sync tree. In order to ensure consistency different type of constraints
appear regarding synchronization, which are out of scope of this paper.

3.6.2 Scaling

To serve as a long running process in a dynamically changing environment in terms of
input load, the synchronization method should be augmented to cover scale in and scale
out scenarios. In this section we will describe this.

Space Scaling

Regarding missing keys we can have two assumptions:

• The event is temporary and as time goes by the key will certainly arrive.

• The event is permanent, the key will never arrive.

If all the keys fall into the first class then, as we shown in [IF-11], it results in a binary
tree with fixed number of nodes on average and a variable component, depending on
the shuffle operation, with an upper bounded size. Therefore we will never not run
out of space. Hence, with a fixed input load the initial setup will be able to serve the
queries. In the second case, after a time depending on the average distance between the
permanently missing keys, the computing node will run out of space. And, due to the total
synchronization, this event will take place in all IMBT at the same time. This previously
mentioned space is not necessarily determined by the size of the RAM: it can be a logical
limit as well. This limit can be translated into number of vertices in the IMBT; let’s
denote this threshold by vt. In the following we distinguish two type of IMBTs.

Definition 3.6.2. The IMBT, which has not exceeded its vt limit yet, is called mutable
processing node or mutable IMBT.

Definition 3.6.3. The IMBT, which has already exceeded its vt limit, is called immutable
processing node.

72

We can estimate, considering the input load and the transactional delay the number
of IMBTs that can serve the filtering related parallelly executed search operations. Let us
set up a C∗1 cluster with that number of mutable IMBTs and denote with k the cardinality
of C∗1 . When the number of IMBT vertices exceeds vt, a message is initiated that informs
all the other IMBTs in this cluster, formed by the mutable IMBTs, that the capacity
limit has been reached and, except this last synchronization message, none of the IMBT
should be modified: this C∗1 cluster becomes an immutable one, C∗1 ⇒ C1. Parallel to the
last synchronization message in C1 a new, C∗2 cluster starts its operation, composed from
exactly k new, mutable empty IMBT nodes.

To satisfy the filtering condition, from now on, first the keys stored in C1 will be
queried. Since the nodes are exactly the same in C1 any node can be contacted. In case
of the key is already stored in one of the intervals then the search operation stops and
the (key, value) pair will be dropped, due to duplication.

Otherwise the C∗2 will be queried. Again: any node can be contacted, since the
IMBTs are almost the same, and due to the synchronization procedure introduced in
Synchronization Methods the duplication will be filtered out, or detected at least. That
is, the average cost of search operation is composed of a sub-search of an immutable
IMBTs, and a sub-search of mutable IMBTs. However, the number of vertices in any
IMBT inside C∗2 less than vt, otherwise it would turn to be C2. So, the framework can
decide about a ki key if it has been stored before or not roughly in average 2 × log(vt)
comparison steps. The above described scenarios are visualized in Fig. 3.22 Let’s see the

Figure 3.22: IMBT Cluster Based Space Scale Out
a) Initial Cluster b) Duplicated Cluster b.1) First the Immutable Ci is queried b.2)
Then the Mutable C∗i is queried.

further step, when C∗2 ⇒ C2 turns to full. In this case C∗3 will be initialized with exactly
the same (k) number of IMBTs inside. Now, to be able to keep the average answer time
under 2 × log(vt), we emit parallel search operations to C1 and C2. Since both of them
contains exactly k IMBTs with exactly vt nodes, but with completely disjoint intervals,
the first answer will arrive within log(vt) comparisons time. Suppose that the key is a new

73

one: then we must turn to the C∗3 , in which any IMBT has less than vt nodes (otherwise
it would turn to be an immutable C3). So, here the query also will be terminated within
log(vt) comparison time. That is the framework can serve any key related query within
in average 2 × log(vt) comparison steps, Fig. 3.23.

Figure 3.23: IMBT Cluster Based Space Scale Out
a) Parallel Queries Against the Immutable IMBTs b) Then Query Against the Mutable
IMBT.

Processing Performance Scaling

a) Scaling with Identical IMBTs
In case when the intensity of the incoming keys is increasing, then the increasing number
of replicas is a possible way to keep the average response time under a certain limit, see
Fig 3.24. The extension operation is a simple copy of any of the existing IMBT from the
Ci. In the C∗i an additional insertion into the synchronization ring is also required with
the modification of two pointers. This action, along with given vt, will not influence the
rate of the C∗i ⇒ Ci transitions; that rate increases with the increase of the input load.
The computing performance of the Ci clusters are increasing, but the parallel emitted
messages as well. Additionally, this action increases the number of IMBTs in the C∗i dur-
ing synchronization, which increases the transactional delay. Therefore the applier must
find the trade-off. In the opposite case the intensity of the streaming keys is decreasing.
In this case as many IMBTs can be freed up in each and every Ci and the C∗i as the re-
maining ones still able to filter the streams of keys. The only constraint is that minimum
one instance must remain from all IMBTs.

b) Scaling with vt of IMBTs
As we presented in the Synchronization Methods there is a strict connection between
the number of vertices in the IMBT and the cost of merging operations (and serializa-
tion/deserialization as well). Therefore it is a way to theoretically increase the perfor-
mance of the filter framework that we intentionally set vt to lower value. This speeds up

74

Figure 3.24: IMBT Increasing Number of Replicas per Ci to Handle the Increased Incoming
Intensity.

both the parallel executed search operations and the synchronization process, since less
vertices must be examined.

Let vt is the power of two, let’s say 2p. Then, by setting vt = 2p+1, or vt = 2p−1 we
can significantly change the both the duration of merging and serialization/deserialization
operations; numerically with one comparison in average in case of every single key.

In case of decreasing vt, the C∗i ⇒ Ci transition rates increasing, and as result the
number of parallel emitted messages as well, which might be a bottleneck.

In the opposite case the increasing of vt lead to less messages, but increasing the cost
of search operation and both the synchronization and serialization/deserialization as well.

Therefore, the determination of vt requires careful planning.

Additionally, wrongly chosen vt can led to such permanent gaps in the IMBTs belong
to different clusters, which would not be there with that high C∗i ⇒ Ci rate, or would
not be there at all. Therefore we have to be convinced, via measuring, that the slicing is
unavoidable and vt is well determined.

To this end, we should measure the of that search operations in Ci which ends with
”not found” on such leaves, which are not extremes (not the leftmost nor the rightmost
leaf), however, still insertion is taken place in C∗i . This may indicate that if a Ci would
still act like a C∗i , then key would be inserted into the tree. Therefore this insertion may
lead to any kind of interval increasing, moreover vertex decreasing. That is, the whole
filtering framework could perform more efficiently.

It is important to note that all the above mentioned methods could be applied not
only to IMBTs, but traditional BSTs as well. What makes it more efficient is the fact
that the number of synchronization messages can be significantly smaller, than with the
traditional case. This is a kind of buffering effect of the application of intervals.

The section relates to Thesis 4.2.5.

75

Chapter 4

Conclusion - Theses

4.1 Theses Group - Lossless Data Compression

4.1.1 Thesis - VDE Compression Method

I worked out the LZW based VDE-LGD lossless data compression method, which fulfills
that requirements against lossless compression methods, according to which by the appli-
cation of the D decoding method on the A2=E(A1) data, where E is encoding compression
method, then as a result the original, A1 input data is given back, that is:

A1 = D(A2), where A2 = E(A1), that is A1 = D(E(A1)). (4.1)

The VDE-LGD compression method is actually a sort of extension of the dictionary
based, lossless compression, the LZW. In case of LZW the compression gain come from the
substitution of dictionary entries by their dictionary position, which can be significantly
shorter than the entry itself 2.2, [IF-02].

In case of VDE I have associated another identifier, the so called index besides the
position. The so called primary indices, which are associated to direct entries are differ
from the values of their positions, except on the zero and the first positions. In case of LGD
the values of primary indices growing according to the triangle numbers. This extension
through the so called virtual indices, which fall between two primary indices allows us to
uniquely identify the different concatenations of the primary entries. Thus, if instead of
positions the indices are stored, then in case of favorable input pattern far longer entries
can be substituted with numbers than in case of positions based substitutions. Such a
virtual word is visible In Fig. 4.1.

During the dictionary building on the decoding side that condition is heavily used that
the value of primary entries have to be identical with the triangle numbers.

4.1.2 Thesis - VDE Analysis

I have worked out a storage need intensity based model, which facilitates the determination
of the compression ratio, time and space complexities, as the fingerprint function of the
length and statistical characteristics of the input data. Through the metrics of Rb (- the

76

Figure 4.1: Virtual word example

required number of bits to represent the full dictionary) and fm (- the number of final
matches), introduced during the modeling, the VDE-LGD method gets comparable with
LZW. 2.3 [IF-03, IF-08]

Based on the model I performed the comparisons in the following extreme cases out
of the dependencies visible in Fig. 2.1

- the following asymptotic space complexities belongs to the most storage demanding
input pattern: SLZW (p) = O(p2) in case of LZW, compared to the SLGD(p) = O(2p)
in case of VDE-LGD, where p refers to the positions of the individual entries;

- the least storage demanding input pattern in case of LZW is unequivocal if all the
words stored with maximum q length: SLZW (q) =

∑q
i=1 Vb

r,i+1. where V refers
to variation, b is the cardinality of the alphabet, r in the upper index means that
repetition is allowed and the number in the upper index refer to the length of the
word over the alphabet. However, the determination of the least storage demanding
input pattern of VDE-LGD is hard due to the presence of the implicit recursive
dependencies. Therefore, in this case I only have proved a required condition, next
to which the SLGD(q) remains asymptotic true, that is SLGD(q) ≈

∑q
i=1 Vb

r,i+1.

- the compression ratio in the most storage demanding case is . Assuming finite dic-
tionary size I proved that CRLGD tends to Shannon limit more faster than CRLZW .
While, I proved that in the least space demanding case CRLGD ≈ 2 ∗ CRLZW .

- the encoding time complexity for given input length, n, both in case of LZW and
LGD can be expressed with the TLZW (n) = Tr(n)+Tcomp(n)+Tde(n)+Tins(n)+

77

Twr(n) formula. However, the LZW’s Tr, Tcomp and Tde operations are squared
proportional to LGD’s same operations. This fact clearly show that the memory
resources has been changed to computation resources.

The related deductions and proves are available in section 2.3.1, 2.3.2 and 2.3.3, re-
spectively.

Figure 4.2: Parameterized VDE-LGD method, where LZW is identical to LGD=0 parameter.

4.2 Theses Group - Data Structures and Data Man-

agement

4.2.1 Thesis - Interval Merging Binary Tree

I have constructed a data structure, the Interval Merging Binary Tree (IMBT), which
might be very efficient for duplication-free storage, in case of the payload can be identified
with such individual keys, which resides close to each other in the key-space. I proved if
the data structure can be significantly more efficient in case of favorable key distribution,
than the already existing ones.

In case of the filtering of unique key identified data most of the data structures stores
each of the identifiers one-by-one. Next to near real time processing this solution might be
easily the bottleneck, even in case of the data structure is the hash-table, where average
operation cost can be characterized with O(1). Namely, the precondition of fast operations
is that the data or data structures resides in the memory. However, in such an enormous
amount of data, like monitoring of a telecommunication network, the memory can become
easily a bottleneck. To this end I have worked out the IMBT, which has a stochastically
constant memory need (in Fig 4.3). Otherwise, its memory need and in accordance to
this the searching operation times complexity is slowly growing.

The related deductions and proves are available in section 3.2.

4.2.2 Thesis - IMBT State Space

I have setup a mathematical model, with the help of which the cardinality of the different
number of time complexities can be upper estimated. [IF-05]

78

Figure 4.3: Interval Merging Binary Tree (IMBT) number of keys increasing and the interval
evolving while the number of nodes is constant.

During the first part of the proof I have proved that number of different arrangements
of the IMBT is identical with number of integer partitions of N. Some naive realizations
are visible in Fig. 3.3,3.4, 3.5. Then I have determined the number of classes, which lead
to different traversal weights, assuming a balanced tree. Finally, by the combination of
the previous outcomes, I determined an upper estimation regarding the possible number
of different time complexities next to given N.

The results are confirm that the efficiency of IMBT is highly influenced by the distri-
bution of incoming keys, besides the balancing. Thus, it is reasonable perform statistical
key distribution based investigations as well.

The related deductions and proves are available in section 3.3.

4.2.3 Thesis - IMBT Special Conditions

I have worked out a computation method, which based on contingency tables. By this
method the average cost of search operation of the IMBT theoretically can be determined.

I have deducted and proved that next to given traversal the search performance of the
IMBT is better compared to the traditional BST-s, until the a ≥ 3

√
N inequality holds,

assuming that the a average interval length is distributed uniformly in the nodes of the
tree. [IF-06]

I have shown that if the conditions, which can be characterized with Bernstein-
theorems[60] are hold, then the average length of the intervals in the tree are fluctuating
around a constant expected value, next to the growing value of N. Otherwise, length of
the intervals tends to ∞, next to finite contingency table, and the height of the IMBT
is fluctuating around a constant value. This results an O(1) time complexity, in terms of
search operations, independently from N, Fig. 4.4 (source [IF-06]).

In case of certain key distributions the height of the IMBT is fluctuating around a
constant value, independently from the number of keys. The width of the blue stripe
depends on the shuffling of the keys. This kind of key distributions lead to stationary
space and time complexities.

The related deductions and proves are available in section 3.4.

79

Figure 4.4: Balanced IMBT, temporary gaps only, O(1) time complexity. The width of the
blue stripe depends on the shuffling of the keys.

4.2.4 Thesis - IMBT Matrix Representation and an Equilibrium
Condition

I have introduced the matrix representation of the IMBT, with the help of which arbitrary
key-distribution easily can be encoded. I gave a required condition of the existence of
equilibrium points in case of series of geometric progressions.

The following formula expresses the required change of the b base as a function of N
to maintain the constant number of nodes in the tree, next to the geometric progression
based distribution of the subsequent interval lengths.

be(N) = x
logx(N)
const. = x

logx(N)
n (4.2)

The related deductions and proves are available in section 3.5.

4.2.5 Thesis - IMBT in Distributed Environment

I have worked out the application of the IMBT in distributed environment, where synchro-
nization between the individual nodes can be executed more effectively compared to other
data structures, due to the buffering effect of the IMBT.

I have proved that by the application of proper scaling methods, where trees are orga-
nized into so called immutable groups the search operation cost is constant, independently
from the number of keys. [IF-07]

The Ci clusters visible in Fig. 3.24 are immutable, that is why parallel queries are
allowed. Since the height of the trees are pre-defined in this solution, the same log(h) +
1 cost is provided. Additionally, the height constraint is valid for the C* under change as
well. That is, the search cost is surely less or equal than 2*(log(h)+1).

During the above introduced solution the number of parallel emitted messages might
become the bottleneck. I am working on a solution, which might solve this problem
with constant number of messages under certain circumstances, or with logT number of
messages, where T >> 2 in worst case. The results are promising, but are not published
yet.

The related deductions and proves are available in section 3.6.

80

Chapter 5

Applicability of the Results

I have worked out both the compression method and the IMBT due to industrial need.
Therefore the practical applicability is well-founded.

Moreover, the quality analysis of the VDE’s worst case may lead to such the field of
mathematical methods, from which I expect more abstract, more general results regarding
the repetition-free strings (combinatorics on words, colored exponential trees).

I am working on a solution, which might solve this problem with constant number of
messages under certain circumstances, or with logT number of messages, where T >> 2
in worst case. The results are promising.

81

References

[1] Amazon AWS, https://aws.amazon.com/, last visited 2021-02-20

[2] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Processing on Large
Clusters, http://static.googleusercontent.com/media/research.google.com/

es/us/archive/mapreduce-osdi04.pdf, last visited 2021-02-20

[3] GFS Architecture, https://static.googleusercontent.com/media/research.

google.com/en//archive/gfs-sosp2003.pdf, last visited 2021-02-20

[4] HDFS Architecture, https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, last visited 2021-02-20

[5] MAPR (now part of HP) https://www.hpe.com/us/en/software/data-fabric.

html, last visited 2021-02-20

[6] STORM - A distributed realtime computation system, http://storm.apache.org/
documentation/Home.html , last visited 2021-02-20

[7] ZeroMQ messaging system https://zeromq.org/, last visited: 2021-02-20

[8] Netty messaging system https://netty.io/, last visited: 2021-02-20

[9] RabbitMQ messaging https://www.rabbitmq.com/, last visited: 2021-02-20

[10] Kafka messaging https://kafka.apache.org/, last visited: 2021-02-20

[11] Millwheel https://static.googleusercontent.com/media/research.google.

com/en//pubs/archive/41378.pdf , last visited 2021-02-20

[12] Samza https://samza.apache.org/, last visited 2021-02-20

[13] Spark https://spark.apache.org/, last visited 2021-02-20

[14] HBase https://hbase.apache.org/, last visited 2021-02-20

[15] Hive https://hive.apache.org/, last visited 2021-02-20

[16] Cassandra https://cassandra.apache.org/, last visited 2021-02-20

[17] CouchDB https://couchdb.apache.org/, last visited 2021-02-20

[18] VoltDB https://www.voltdb.com/, last visited 2021-02-20

[19] Zookeeper https://zookeeper.apache.org/, last visited 2021-02-20

82

https://aws.amazon.com/
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://www.hpe.com/us/en/software/data-fabric.html
https://www.hpe.com/us/en/software/data-fabric.html
http://storm.apache.org/documentation/Home.html
http://storm.apache.org/documentation/Home.html
https://zeromq.org/
https://netty.io/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41378.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41378.pdf
https://samza.apache.org/
https://spark.apache.org/
https://hbase.apache.org/
https://hive.apache.org/
https://cassandra.apache.org/
https://couchdb.apache.org/
https://www.voltdb.com/
https://zookeeper.apache.org/

[20] Ganglia monitoring system http://ganglia.sourceforge.net/, last visited: 2021-
02-20

[21] Lambda architecture http://lambda-architecture.net/, last visited: 2021-02-20

[22] Java Collections Frameworks, http://docs.oracle.com/javase/7/docs/

technotes/guides/collections/overview.html , last visited 2021-02-20

[23] Knuth, Donald (1997). ”6.2.2: Binary Tree Searching”. The Art of Computer Pro-
gramming. 3: ”Sorting and Searching” (3rd ed.). Addison-Wesley. pp. 426–458. ISBN
0-201-89685-0.

[24] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms
(3rd ed.). MIT Press and McGraw-Hill, (2009). ISBN:0-262-03384-4

[25] Adelson-Velsky, G., Landis, E.: Organization and maintenance of large or-
dered indexes, Acta Informatica, Volume 1, Issue 3, pp. 173-189, (1972).
DOI:10.1007/BF00288683

[26] Adelson-Velsky, G., Landis, E.: An algorithm for the organization of information,
Proceedings of the USSR Academy of Sciences, Volume 146 , pp. 263-266 (1962).

[27] AVL Tree - Wiki, https://en.wikipedia.org/wiki/AVL-tree , last visited 2021-
02-20

[28] Sedgewick, R.: Algorithms 1st edition, Addison-Wesley 1983, ISBN 0-201-06672-6.

[29] Bayer, R.: Symmetric binary B-Trees: Data structure and maintenance algorithms,
Acta Informatica, Volume 1, Issue 4, pp. 290-306, (1972). DOI:10.1007/BF00289509

[30] B-Tree - Wiki, https://en.wikipedia.org/wiki/B-tree, last visited 2021-02-20

[31] Bayer, R.: Symmetric binary B-Trees: Data structure and maintenance algorithms,
Acta Informatica, Volume 1, Issue 4, pp. 290-306, (1972). DOI:10.1007/BF00289509

[32] Red-black tree - Wiki, https://en.wikipedia.org/wiki/Red-black_tree, last vis-
ited 2017-03-29

[33] Paul E. Black, ”(a,b)-tree”, in Dictionary of Algorithms and Data Structures [online],
Paul E. Black, ed. 6 October 2004. (accessed 2021-03-22) Available from: https:

//www.nist.gov/dads/HTML/abtree.html

[34] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.: Interval Trees,
Computational Geometry, Second Revised Edition. Springer-Verlag, Section 10.1, pp.
212-217 (2000).

[35] Interval Tree https://en.wikipedia.org/wiki/Interval_tree, last visited 2021-
02-20

[36] Bentley, J. L., Ottmann, T. A.: Algorithms for reporting and counting geomet-
ric intersections, IEEE Transactions on Computers, C28 (9), pp. 643-647, (1979).
DOI:10.1109/TC.1979.1675432

83

http://ganglia.sourceforge.net/
http://lambda-architecture.net/
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
https://en.wikipedia.org/wiki/AVL-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Red-black_tree
https://www.nist.gov/dads/HTML/abtree.html
https://www.nist.gov/dads/HTML/abtree.html
https://en.wikipedia.org/wiki/Interval_tree

[37] Bentley, J. L., Ottmann, T. A.: Algorithms for reporting and counting geomet-
ric intersections, IEEE Transactions on Computers, C–28 (9), pp. 643-647, (1979).
DOI:10.1109/TC.1979.1675432

[38] Pfaff, B.: Performance analysis of BSTs in system software, ACM SIGMETRICS
’04, Volume 32 Issue 1, pp. 410-422, (2004). ISBN:1-58113-873-3

[39] Bloom, B. H.: Space/time trade-offs in hash coding with allowable errors, Commu-
nications of the ACM, Volume 13 Issue 7, pp 422-426, New York, NY, USA, July
(1970).

[40] Tom White: Hadoop: The definitive Guide, 2012 O’REILLY, ISBN: 978-1-449-31152-
0-1327616795

[41] Jiang Liu; Bing Li; Meina Song: THE optimization of HDFS based on small files,
Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd IEEE Inter-
national Conference on, pp 913 - 915, 2010

[42] Zhang, Yang; Liu, Dan: Improving the Efficiency of Storing for Small Files in HDFS,
Computer Science & Service System (CSSS), 2012 International Conference on, pp
2239 - 2242, 2012

[43] History of Lossless Data Compression Algorithms, http://ethw.org/History_of_
Lossless_Data_Compression_Algorithms, last visited 2021-02-20

[44] Salomon, D., Motta, G.: Handbook of Data Compression, 5th edition London, Eng-
land: Springer-Verlag, 2010, pp. 377-378. David Salomon, Giovanni Motta: Handbook
of Data Compression, 5th edition London, England: Springer-Verlag, 2010, pp. 378-
379.

[45] Triangular Number, http://mathworld.wolfram.com/TriangularNumber.html,
last visited 2021-02-20

[46] Lempel, A., Ziv, J.: On the Complexity of Finite Sequences, IEEE Transactions on
Information Theory, Volume 22 Issue 1, pp. 75 - 81, Jan 1976

[47] Ziv, J.: A constrained-dictionary version of LZ78 asymptotically achieves the finite-
state compressibility with a distortion measure, IEEE Information Theory Workshop
(ITW), pp. 1-4, 2015, Jerusalem, Israel

[48] Welch, T.: A Technique for High-Performance Data Compression, IEEE Computer
Society Journal Volume 17 Issue 6, pp 8 - 19, June 1984

[49] Ziv, J.: A constrained-dictionary version of LZ78 asymptotically achieves the finite-
state compressibility with a distortion measure, IEEE Information Theory Workshop
(ITW), pp. 1 - 4, 2015, Jerusalem, Israel

[50] Shields, C.: Performance of LZ algorithms on individual sequences, IEEE Transac-
tions on Information Theory, Volume 45 Issue 4, pp. 1283-1288, May 1999

[51] Nishad PM, Dr. R. Manicka Chezian: Behavioral Study of Data Structures on Lempel
Ziv Welch (LZW) Data Compression Algorithm and ITS Computational Complexity,
Intelligent Computing Applications (ICICA), 2014 International Conference on, pp.
268-274, March 2014

84

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms
http://ethw.org/History_of_Lossless_Data_Compression_Algorithms
http://mathworld.wolfram.com/TriangularNumber.html

[52] Google Brotli https://en.wikipedia.org/wiki/Brotli, last visited 2021-02-20

[53] Google Snappy https://google.github.io/snappy/, last visited 2021-02-20

[54] Facebook Zstandard https://engineering.fb.com/2016/08/31/core-data/

smaller-and-faster-data-compression-with-zstandard/, last visited 2021-02-
20

[55] Facebook Zstandard https://en.wikipedia.org/wiki/Zstandard, last visited
2021-02-20

[56] Hardy, G.H., Ramanujan, S.: Asymptotic Formulae in Combinatory Analysis, Pro-
ceedings of the London Mathematical Society, 1918

[57] Bóna, M.: A Walk Through Combinatorics: An Introduction to Enumeration and
Graph Theory. pp. 145-164, World Scientific Publishing, 2002 ISBN 981-02-4900-4.

[58] Cayley, A.: A Theorem on Trees. Quarterly Journal of Pure and Applied Mathemat-
ics 23, pp. 376-378, 1889

[59] Barvionk, A.: Enumerating Contingency Tables via Random Permanents,
Combinatorics, Probability and Computing, Volume 17, pp. 1-19, 2008
DOI:10.1017/S0963548307008668

[60] Barvinok, A., Luria, A., Samorodnitsky, A., Yong, A.: An approximation algorithm
for counting contingency tables, Random Structures Algorithms 37 (2010), no. 1, pp.
25-66, 2010 DOI:10.1002/rsa.20301 arXiv:0803.3948

[61] Stoica, I.; Morris, R.; Liben-Nowell, D.; Karger, D. R.; Kaashoek, M. F.; Dabek, F.;
Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Ap-
plications. IEEE/ACM Trans. Netw. 2003, 11(1), 17–32. DOI:10.1145/964723.383071

[62] Lauritzen, S.L. Lectures on Contingency Tables, 2002, Electronic edition, Aalborg
University. Available online:http://www.stats.ox.ac.uk/~steffen/papers/cont.
pdf, (accessed on 28 November 2019)

[63] Meyn, S.P. Tweedie, R.L. Markov Chains and Stochastic Stability. Springer: London,
UK, 2012. ISBN9781447132677

[64] Bernstein, S.N. Theory of Probabilities. Moskva, Leningrad, 1946.

[65] FLINK - A framework and distributed processing engine for stateful computations
over unbounded and bounded data streams, https://flink.apache.org/, last vis-
ited 2020-02-13

[66] Neuman, B.: Scale in Distributed Systems, Readings in Distributed Computing Sys-
tems, pages 463-489. IEEE Computer Society Press, Los Alamitos, CA., 1994

[67] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and Alonso, G.: Understanding
Replication in Databases and Distributed Systems. In 20th International Conference
on Distributed Computing Systems, pages 264-274, Taipei, Taiwan, Apr. 2000. IEEE.
DOI: 10.1109/ICDCS.2000.840959

85

https://en.wikipedia.org/wiki/Brotli
https://google.github.io/snappy/
https://engineering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-zstandard/
https://engineering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-zstandard/
https://en.wikipedia.org/wiki/Zstandard
http://www.stats.ox.ac.uk/~steffen/papers/cont.pdf
http://www.stats.ox.ac.uk/~steffen/papers/cont.pdf
https://flink.apache.org/

[68] Merkle, R., C.: ”A Digital Signature Based on a Conventional Encryption Function”.
Advances in Cryptology — CRYPTO ’87. Lecture Notes in Computer Science. 293.
1987 pp. 369-378 DOI: 10.1007/3-540-48184-2 32

[69] O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The Log-Structured Merge-Tree
(LSM-Tree). Acta Informatica (1996) 33: 351. DOI: 10.1007/s002360050048.

[70] Sears, R., Ramakrishnan, R.: bLSM: A General Purpose Log Structured Merge
Tree, SIGMOD ’12, Scottsdale, Arizona, USA, May 20-24, 2012, pp. 217-228, DOI:
10.1145/2213836.2213862

[71] Lawder, J. and King, P.: Querying Multi-dimensional Data Indexed Using
Hilbert Space-Filling Curve. ACM Sigmod Record, 30(1):19-24, Mar. 2000. DOI:
10.1145/373626.373678

[72] Vogels W.: Eventually consistent. Communications of the ACM, 52(1):40–44, Jan.
2009.

[73] Minsky, Y., Trachtenberg, A., Zippel, R.: Set Reconciliation with Nearly Optimal
Communication Complexity, IEEE Transactions on Information Theory, Volume: 49,
Issue: 9, Sept. 2003, pp 2213-2218 DOI: 10.1109/TIT.2003.815784

[74] Chen, D., Konrad, C., Yi, K., Yu, W., Zhang, Q.: Robust Set Reconciliation, SIG-
MOD ’14 Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data, pp 135-146 DOI: 10.1145/2588555.2610528

[75] Mehta, D., P., Sahni, S.: Handbook Of Data Structures And Applications, Chapman
and Hall/CRC, 2004 ISBN:1584884355

[IF-01] Finta, I.; Farkas, L.; Sergyán, Sz.; Szénási, S.: Buffering Strategies in HDFS En-
vironment with STORM framework, IEEE 16th International Symposium on Compu-
tational Intelligence and Informatics, 19–21 November, 2015, Budapest, Hungary

[IF-02] Finta, I.; Farkas, L.; Sergyán, Sz.; Szénási, S.: A Method for Virtual Extension of
LZW Compression Dictionary, Innovations in Clouds, Internet and Networks (ICIN),
19th IEEE International Conference on, pp 184 - 188, 2016, Paris

[IF-03] Finta, I.; Farkas, L.; Sergyán, Sz.; Szénási, S.: Transient analysis of virtual dictio-
nary extension compression method, IEEE 17th International Symposium on Compu-
tational Intelligence and Informatics (CINTI), pp. 67-74, 17-19 Nov. 2016, Budapest,
Hungary DOI: 10.1109/CINTI.2016.7846381

[IF-04] Finta, I.; Farkas, L.; Sergyán, Sz.; Szénási, S.: Interval Merging Binary Tree,
ICA3PP 2017, Helsinki, Finland, August 21-23, 2017 DOI:10.1007/978-3-319-65482-9

[IF-05] Finta, I.; Szénási, S.: State-space Analysis of the Interval Merging Binary Tree.
Acta Polytech. Hung. 2019 16(5), pp 71–85. DOI: 10.12700/APH.16.5.2019.5.5

[IF-06] Finta, I.; Szénási, S.; Farkas, L.: Input Pattern Classification Based on the Markov
Property of the IMBT with Related Equations and Contingency Tables. Entropy 2020,
22, 245. https://doi.org/10.3390/e22020245

86

https://doi.org/10.3390/e22020245

[IF-07] Finta, I.; Szénási, S.; Farkas, L.: Data Structure for Packet De-Duplication in
Distributed Environments, 2020 IEEE Sixth International Conference on Big Data
Computing Service and Applications, Oxford, United Kingdom, ISBN: 978-1-7281-
7022-0

[IF-08] Finta, I.; Szénási, S.; Farkas, L.: Quantity Analysis on the Chaining of Repetition-
free Words Considering the VDE Composition Rule, IEEE 15th International Sym-
posium on Applied Computational Intelligence and Informatics, SACI2021

[IF-09] Finta, I.; Szénási, S.; Farkas, L.: Quantifying the Performance of Interval Merging
Binary Trees using a Matrix Representation, The 2021 World Congress in Computer
Science, Computer Engineering, & Applied Computing - CSCE ’21, Las Vegas, USA,
2021

[IF-10] Horvath, I.; Finta, I.; Kovacs, F.; Meszaros, M.; Molontay, R.; and Varga, K.:
Markovian queue with garbage collection. In: Thomas N., Forshaw M. (eds) Analyt-
ical and Stochastic Modelling Techniques and Applications. ASMTA 2017. Lecture
Notes in Computer Science, vol 10378. Springer, Cham. https://doi.org/10.1007/
978-3-319-61428-1_8

[IF-11] Finta, I.; Élias, G.; Illés, J.: Packet Loss and Duplication Handling in Stream Pro-
cessing Environment. In Proceedings of the CINTI 2018, Budapest, Hungary, 21–22
November 2018. DOI:10.1007/978-3-319-65482-9

87

https://doi.org/10.1007/978-3-319-61428-1_8
https://doi.org/10.1007/978-3-319-61428-1_8

APPENDICES

88

Appendix A

VDE Pseudo Code

A.1 Encoding - Java Like

private InputStream is;

private OutputStreamWriter os_stat;

private OutputStream os_stat_orig;

private final int baseLength = 256;

private int extendedLength = 256;

private int valueToWrite;

private int dictAbsPosition;

private HashMap<String, Integer> dictionary;

private String[] dictionaryIndex;

private StringBuffer sb = new StringBuffer(this.extendedLength);

private String initChars = "";

private HashSet<Integer> reservedIntegers = new

HashSet<Integer>(initChars.length());↪→

private boolean firstMatchBool = true;

private int firstMatchPos = 0;

private int wordPos = 0;

private int tempPos = 0;

private String nextWord = null;

private StringBuffer buffer = new StringBuffer(this.extendedLength);

private String destination = "";

private CompressionWriter cw;

private boolean logging = false;

int lenght_length = 5;

StringBuffer length_base = new StringBuffer ("00000");

String length_final = "";

89

public void encode (){

int c = 0;

this.dictAbsPosition = this.baseLength;

String character = "";

int internal_value_to_write = 0;

if (this.sb.length() > 0)

this.sb.delete(0, (this.sb.length() - 1));

while ((c != -1) || (this.buffer.length() >= 0) || (this.sb.length()

>= 0)) {↪→

if (this.firstMatchBool) {

if ((c != -1) && (this.buffer.length() < 1)) {

if ((c = this.is.read()) != -1) {

character = new String(Character.toChars(c));

this.buffer.append(character);

os_stat_orig.write(c);

} else {

break;

}

}

if (this.dictionary.containsKey(this.sb +

this.buffer.substring(0, 1))) {↪→

this.sb.append(this.buffer.substring(0, 1));

this.buffer.delete(0, 1);

} else {

this.firstMatchPos = this.dictionary.get(new

String(this.sb));↪→

if (this.sb.length() > 1) {

this.wordPos++;

if (((this.firstMatchPos + this.wordPos) <

this.dictionaryIndex.length) &&↪→

!("0".equals(this.dictionaryIndex[this.firstMatchPos

+ this.wordPos]))) {

↪→

↪→

this.firstMatchBool = false;

this.nextWord =

this.dictionaryIndex[this.firstMatchPos +

this.wordPos].substring(1);

↪→

↪→

} else {

//no more entry, write out and update dictionary

this.wordPos = 0;

internal_value_to_write = this.valueToWrite();

cw.write(internal_value_to_write);

this.dictionaryOverflowHandling();

this.sb.delete(0, this.sb.length());

this.sb.append(this.buffer.substring(0, 1));

this.buffer.delete(0, 1);

}

} else {

90

internal_value_to_write = this.valueToWrite();

cw.write(internal_value_to_write);

this.dictionaryOverflowHandling();

this.sb.delete(0, this.sb.length());

this.sb.append(this.buffer.substring(0, 1));

this.buffer.delete(0, 1);

}

}

} else {

if ((c != -1) && ((this.buffer.length() - this.tempPos) <

1)) {↪→

if ((c = this.is.read()) != -1) {

character = new String(Character.toChars(c));

this.buffer.append(character);

os_stat_orig.write(c);

} else {

continue;

}

}

// Step over the word from dictionary

if (this.tempPos < this.nextWord.length()) {

if (((this.buffer.length() - 1) >= this.tempPos) &&

(this.nextWord.charAt(this.tempPos) ==↪→

this.buffer.charAt(this.tempPos))) {

this.tempPos++;

} else {

//write out and go to first match with characters

buffered↪→

this.wordPos--;

internal_value_to_write = this.valueToWrite();

cw.write(internal_value_to_write);

this.dictionaryOverflowHandling();

this.sb.delete(0, this.sb.length());

if (this.buffer.length() > 0) {

this.sb.append(this.buffer.substring(0, 1));

this.buffer.delete(0, 1);

}

if (c != -1) {

this.tempPos = 0;

this.wordPos = 0;

this.firstMatchBool = true;

} else {

break;

}

}

// Search for new entry in the dictionary

} else {

this.sb.append(nextWord);

91

this.buffer.delete(0, this.tempPos);

this.wordPos++;

if (((this.firstMatchPos + this.wordPos) <

this.dictionaryIndex.length) &&↪→

!("0".equals(this.dictionaryIndex[this.firstMatchPos

+ this.wordPos]))) {

↪→

↪→

this.nextWord =

this.dictionaryIndex[this.firstMatchPos +

this.wordPos].substring(1);

↪→

↪→

} else {

//no more entry, write out and update dictionary

this.wordPos--;

internal_value_to_write = this.valueToWrite();

cw.write(internal_value_to_write);

this.dictionaryOverflowHandling();

this.sb.delete(0, this.sb.length());

this.sb.append(this.buffer.substring(0, 1));

this.buffer.delete(0, 1);

this.wordPos = 0;

this.firstMatchBool = true;

}

this.tempPos = 0;

}

}

}

}

A.2 Decoding - Java Like

private OutputStream os;

private final int baseLength = 256;

private final int extendedLength = 256;

private CompressionReader cr;

private String[] dictionary;

private int dictAbsPosition;

private double position;

private double flooredPosition;

private double numberOfHops = 0;

private String derivedWord = "";

private String initChars = "ab";

92

private HashSet<Integer> reservedIntegers = new

HashSet<Integer>(initChars.length());↪→

public void decode () {

this.dictAbsPosition = this.baseLength;

int j = 0;

String sk = "";

char character;

j = this.cr.decode();

for (int l = 0; l < this.dictionary[j].length(); l++) {

this.os.write(this.dictionary[j].charAt(l));

}

sk = this.dictionary[j];

j = 0;

while ((j = this.cr.decode()) != -1) {

if (j < this.baseLength) {

this.position = j;

this.flooredPosition = j;

} else {

this.position = ((Math.sqrt((1 + 8*(j - this.baseLength))) -

1) / 2) + this.baseLength;↪→

this.flooredPosition = Math.floor(this.position);

}

// If position is an "integer" it is a primary entry otherwise it

is a derivative↪→

if (this.position != this.flooredPosition) {

this.numberOfHops = j - this.baseLength -

(((this.flooredPosition - this.baseLength) *

((this.flooredPosition - this.baseLength) + 1)) / 2);

↪→

↪→

if (this.dictionary[(int)this.flooredPosition] != null) {

for (int l = (int)(this.flooredPosition -

this.numberOfHops); l <= (int)this.flooredPosition;

l++) {

↪→

↪→

int m = 0;

if (l != (int)(this.flooredPosition -

this.numberOfHops)) {↪→

m = 1;

}

for (; m < this.dictionary[l].length(); m++) {

this.os.write(this.dictionary[l].charAt(m));

this.derivedWord = this.derivedWord +

this.dictionary[l].charAt(m);↪→

}

}

character = this.derivedWord.charAt(0);

this.dictionary[this.dictAbsPosition] = sk + character;

sk = new String(this.derivedWord);

93

this.derivedWord = "";

} else {

character = this.dictionary[(int)(this.flooredPosition -

this.numberOfHops)].charAt(0);↪→

this.dictionary[this.dictAbsPosition] = sk + character;

for (int l = (int)(this.flooredPosition -

this.numberOfHops); l <= (int)this.flooredPosition;

l++) {

↪→

↪→

int m = 0;

if (l != (int)(this.flooredPosition -

this.numberOfHops)) {↪→

m = 1;

}

for (; m < this.dictionary[l].length(); m++) {

this.os.write(this.dictionary[l].charAt(m));

this.derivedWord = this.derivedWord +

this.dictionary[l].charAt(m);↪→

}

}

sk = new String(this.derivedWord);

this.derivedWord = "";

}

} else {

if (this.dictionary[(int)this.flooredPosition] != null) {

for (int l = 0; l <

this.dictionary[(int)this.flooredPosition].length();

l++) {

↪→

↪→

this.os.write(this.dictionary[(int)this.flooredPosition].charAt(l));↪→

}

character =

this.dictionary[(int)this.flooredPosition].charAt(0);↪→

this.dictionary[this.dictAbsPosition] = sk + character;

} else {

character = sk.charAt(0);

this.dictionary[this.dictAbsPosition] = sk + character;

for (int l = 0; l <

this.dictionary[this.dictAbsPosition].length(); l++)

{

↪→

↪→

this.os.write(this.dictionary[this.dictAbsPosition].charAt(l));↪→

}

}

sk = this.dictionary[(int)this.flooredPosition];

}

this.dictionaryOverflowHandling();

}

}

94

95

Appendix B

IMBT Search, Insert and Remove
pseudo codes

B.1 Search

/***

SEARCH PSEUDO

***/

function node SEARCH (tree T, key K) {

node node;

if(T.root == NULL) {

/*We are ready the tree is empty*/

return NULL;

} else {

node = T.root;

while (node != NULL) {

if (K < node.domain_Left_Value) {

node = node.pointer_to_Left_Child;

} elseif (K > node.domain_Left_Value) {

node = node.pointer_to_Right_Child;

} else {

return node;

}

} // end of while

return NULL;

}

}

B.2 Insert

96

/***

INSERT PSEUDO

***/

function INSERT (tree T, key K) {

if(T.root == NULL) {

/*Generate a root node with boundaries/domain values (K, K);*/

T.root = new node(K, K);

} else {

/*Search for the place of the new key K, with the following rules*/

node = T.root;

while (node != NULL) {

if (node.domain_Left_Value <= K <= node.domain_Rigth_Value) {

drop K; /*already stored*/

node = NULL;

} else {

/* Left Branch */

if (K < node.domain_Left_Value){

if ((node.domain_Left_Value { K) > 1) {

if (node.pointer_to_Left_Child != NULL) {

node = node.pointer_to_Left_Child;

} else {

node.pointer_to_Left_Child = new node(K, K);

node = NULL;

}

/* checkMerging will be performed */

} else {

node.domain_Left_Value = K;

checkMerging(node, L);

node = NULL;

}

/* Right Branch */

} else {

if ((K - node.domain_Right_Value) > 1) {

if (node.pointer_to_Right_Child != NULL) {

node = node.pointer_to_Right_Child;

} else {

node.pointer_to_Right_Child = new node(K, K);

node = NULL;

}

/* checkMerging will be performed */

} else {

node.domain_Right_Value = K;

checkMerging(node, R);

node = NULL;

}

}

}

97

} //end of while

}

}

function checkMerging(node N, direction D) {

node origNode = N;

node subNode;

boolean found = false;

if (D == L) {

if (origNode.pointer_to_Left_Child != NULL) {

subNode = origNode.pointer_to_Left_Child;

} else {

found = true;

}

} else {

if (origNode.pointer_to_Right_Child != NULL) {

subNode = origNode.pointer_to_Right_Child;

} else {

found = true;

}

}

while (!found) {

/* Left Branch */

if (D == L) {

/* Search for highest smaller node */

if (subNode.pointer_to_Right_Child != NULL) {

subNode = subNode.pointer_to_Right_Child;

} else {

if ((origNode.domain_Left_Value { subNode.domain_Right_Value) == 1) {

merging(origNode, subNode, L);

}

found = true;

}

/* Right Branch */

} else {

/* Search for smallest higher node */

if (subNode.pointer_to_Left_Child != NULL) {

subNode = subNode.pointer_to_Left_Child;

} else {

if ((subNode.domain_Rigt_Value { origNode.domain_Right_Value) == 1) {

merging(origNode, subNode, R);

}

found = true;

}

}

}

}

98

function merging (node origNode, node subNode, direction D) {

/* Left Branch */

if (D == L) {

/* subNode is directly child of the origNode */

if (origNode.pointer_to_Left_Child == subNode) {

origNode.domain_Left_Value = subNode.domain_Left_Value;

/* node is not a leaf */

if (subNode.pointer_to_Left_Child != NULL) {

origNode.pointer_to_Left_Child = subNode.pointer_to_Left_Child;

/* node is a leaf */

} else {

origNode.pointer_to_Left_Child = NULL;

}

/* subNode has not direct connection to origNode */

} else {

origNode.domain_Left_Value = subNode.domain_Left_Value;

/* node is not a leaf */

if (subNode.pointer_to_Left_Child != NULL) {

subNode.parent.pointer_to_Left_Child = subNode.pointer_to_Left_Child;

/* node is a leaf */

} else {

subNode.parent.pointer_to_Left_Child = NULL;

}

}

/* Right Branch */

} else {

/* Same as Left Branch with opposite directions */

}

}

B.3 Remove

/***

REMOVE PSEUDO

***/

function REMOVE (tree T, key K) {

node node;

node subNode;

if(T.root == NULL) {

/*We are ready the tree is empty*/

} else {

/*Search for key K*/

node = T.root;

99

while (node != NULL) {

/* Left Branch */

if (K < node.domain_Left_Value) {

if (node.pointer_to_Left_Child != NULL) {

node = node.pointer_to_Left_Child;

} else {

/* the Tree does not contain the Key */

node = NULL;

}

/* Right Branch */

} elseif (K > node.domain_Left_Value) {

if (node.pointer_to_Right_Child != NULL) {

node = node.pointer_to_Right_Child;

} else {

/* the Tree does not contain the Key */

node = NULL;

}

} else {

/* Node which contains the K key has been found */

if (node = T.root) {

/* The root contains only 1 Key */

if (node.domain_Left_Value == node.domain_Rigth_Value) {

if (node.pointer_to_Right_Child != NULL) {

if (node.pointer_to_Left_Child != NULL) {

subNode = searchForSmallestSubNode(node.pointer_to_Right_Child);

subNode.pointer_to_Left_Child = node.pointer_to_Left_Child;

}

T.root = node.pointer_to_Right_Child;

} else {

if (node.pointer_to_Left_Child != NULL) {

T.root = node.pointer_to_Left_Child;

} else {

T.root = NULL;

}

}

} else {

/* node covers only 2 elements */

if ((node.domain_Rigth_Value { node.domain_Left_Value) == 1) {

if (K == node.domain_Left_Value) {

node.domain_Left_Value = node.domain_Right_Value;

} else {

node.domain_Right_Value = node.domain_Left_Value;

}

/* node covers more than 2 elements */

} else {

/* K is one of the boundary value */

if (K == node.domain_Left_Value) {

node.domain_Left_Value = K + 1;

100

} elseif (K == node.domain_Right_Value) {

node.domain_Right_Value = K { 1;

/* K is one element from the middle of the domain */

} else {

subNode = new node(T.root.domain_Left_Value, K-1);

subNode.pointer_to_Left_Child = T.root.pointer_to_Left_Child;

T.root.domain_Left_Value = K + 1;

T.root.pointer_to_Left_Child = subNode;

}

}

}

/* node != T.root */

} else {

/* node is a left-node */

if (node == node.parent.pointer_to_Left_Child) {

/* The node contains only 1 Key

if (node.domain_Left_Value == node.domain_Rigth_Value) {

if (node.pointer_to_Right_Child != NULL) {

if (node.pointer_to_Left_Child != NULL) {

subNode = searchForSmallestSubNode(node.pointer_to_Right_Child);

subNode.pointer_to_Left_Child = node.pointer_to_Left_Child;

}

node.parent.pointer_to_Left_Child = node.pointer_to_Right_Child;

} else {

if (node.pointer_to_Left_Child != NULL) {

node.parent.pointer_to_Left_Child = node.pointer_to_Left_Child;

} else {

node.parent.pointer_to_Left_Child = NULL;

}

}

} else {

/* node covers only 2 elements */

if ((node.domain_Rigth_Value { node.domain_Left_Value) == 1) {

if (K == node.domain_Left_Value) {

node.domain_Left_Value = node.domain_Right_Value;

} else {

node.domain_Right_Value = node.domain_Left_Value;

}

/* node covers more than 2 elements */

} else {

/* K is one of the boundary value */

if (K == node.domain_Left_Value) {

node.domain_Left_Value = K + 1;

} elseif (K == node.domain_Right_Value) {

node.domain_Right_Value = K { 1;

/* K is one element from the middle of the domain */

} else {

subNode = new node(node.domain_Left_Value, K-1);

101

subNode.pointer_to_Left_Child = node.pointer_to_Left_Child;

node.domain_Left_Value = K + 1;

node.pointer_to_Left_Child = subNode;

subNode.parent = node;

}

}

/* node is a right-node */

} else {

/* regarding the parent everything is the opposite */

}

}

node = NULL;

}

} //end of while

}

}

102

	List of Figures
	List of Tables
	Introduction
	Efficient Filtering
	Compression
	Goal of the Research

	Virtual Dictionary Extension
	Background – LZW Compression
	LZW Encoding
	LZW Decoding
	LZW, LZMW and LZAP Problems

	Virtual Dictionary Extension(VDE)
	Linear Growth Distance Composition Rule
	Linear Growth Distance Encoding
	Linear Growth Distance Decoding

	Complexities
	Encoding Space Complexity
	Compression Ratio
	Encoding Time Complexities

	Quantity Analysis on the Chaining of Repetition Free Words Considering the VDE Composition Rule
	Terms and the Formal Definition of the Goal
	Quantity Analysis of Primary Words Influenced by Virtual Words

	Interval Merging Binary Tree
	Problem
	Methodology
	Concept of the data structure
	Data Structure for Interval Merging

	State-space analysis
	Inteval State-space
	Traversal Strategy Based Weight Classes
	Bipartite Graphs and Combination Tables on the modeling of IMBT State Space

	Arrangements Related Conditions, Theorems, and Equations
	Permanent Gaps
	Temporary Gaps

	Arbitrary Distribution - The Matrix Representation
	The Matrix Representation
	Model Refinements
	Experimentation results

	Packet De-duplication in Distributed Environment
	Synchronization Methods
	Scaling

	Conclusion - Theses
	Theses Group - Lossless Data Compression
	Thesis - VDE Compression Method
	Thesis - VDE Analysis

	Theses Group - Data Structures and Data Management
	Thesis - Interval Merging Binary Tree
	Thesis - IMBT State Space
	Thesis - IMBT Special Conditions
	Thesis - IMBT Matrix Representation and an Equilibrium Condition
	Thesis - IMBT in Distributed Environment

	Applicability of the Results
	References
	APPENDICES
	VDE Pseudo Code
	Encoding - Java Like
	Decoding - Java Like

	IMBT Search, Insert and Remove pseudo codes
	Search
	Insert
	Remove

