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1 Background of the Research

The application of biostatistical tools is indispensable in many current medical research.
As medicine became more and more empirically oriented in the last centuries, and as
it became more and more model-oriented in the last decades, the mathematical and –
specifically – biostatistical methods received special attention. The application of such
apparatus is necessary to the precise investigation of many questions, and can also
help to raise new ones. The present dissertation shows two examples for this. It also
demonstrates how informatics and applied informatics supports the modern biostatistical
investigations.

1.1 Effect of Obesity on Laboratory Parameters

The first thesis group deals with the topic of obesity, more specifically, pediatric obesity.
Obesity (Andersen 2003) is considered an epidemic in most parts of the developed world.
As an example: it has been long time since overweight and obese people became the
majority in the United States’ population; according to the latest data, the prevalence
of overweight is 34.2%, the prevalence of obesity and extreme obesity is 39.5% among
adults aged 20 and over (Ogden and Carrol 2010b). The speed of progress is even more
frightening, especially as far as obesity is concerned: the same prevalence was only 14.3%
in 1960 (Ogden and Carrol 2010b). Situation is similar in Hungary: the prevalence
of overweight is 34.1%, the prevalence of obesity is 19.5% (Organization for Economic
Co-operation and Development 2012).

The same applies to pediatric obesity as well, although the available information is less
detailed (Wang and Lobstein 2006; Ogden, Yanovski, et al. 2007). In the United States,
the prevalence of obesity among children and adolescents aged 2-19 is 16.9% (Ogden and
Carrol 2010a), in Hungary, the same prevalence is estimated to be about 5-10% (Kern
2007; Antal et al. 2009).

Obesity is in the focus of public health for decades, as – in addition to its continuously
increasing prevalence – it also increases all-cause morbidity and mortality (Flegal et al.
2013; Visscher and Seidell 2001; Pi-Sunyer 2009). Type 2 diabetes (formerly known as non-
insulin dependent diabetes, which is typically adult-onset), various cardiovascular diseases
(including ischaemic heart disease), asthma, gallbladder disease, various malignant tumors
are examples for diseases with increased occurrence casually linked to obesity(Guh et al.
2009). These have been described in children too (Burke 2006; Nyberg et al. 2011).

It is well-known that obesity, and even overweight, causes systematical changes in the
laboratory results. The reasons of these changes are complex. On one hand, many change
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is a more or less direct consequence of the manifestly altered homeostatic equilibrium
induced by obesity, like elevated serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels found in obese adults (Ruhl and Everhart 2003), and in
children as well.

However, in some cases, the change in the laboratory parameters can not be attributed to
a single physiological alteration, or even to any well-defined alteration that causes manifest
obesity-related finding at all at the moment the laboratory parameter is already changed.
A notable example is C-reactive protein (CRP) which is used even predicatively (Bo et al.
2009; Juonala et al. 2011; Ong et al. 2011) because of this reason.

1.2 Modeling and Evaluating the Performance of Tight Glycemic Control
Protocols

The second thesis group also considers a problem of an intensively researched topic:
it deals with the objective evaluation and examination of the so-called tight glycemic
control protocols that are used in critical care.

Stress induced hyperglycemia is a significant issue in critical care, affecting up to
30-50% of patients and increasing morbidity and mortality (Krinsley 2003; McCowen,
Malhotra, and Bistrian 2001). Controlling glycemia has proved difficult due to the
associated risk of hypoglycemia when highly dynamic patients are treated with exogenous
insulin (Griesdale et al. 2009). Both extremes, as well as glycemic variability, have been
independently linked to increased morbidity and mortality (Bagshaw et al. 2009; Egi
et al. 2006; Krinsley 2008), creating a difficult clinical problem.

More specifically, inter- and intra- patient metabolic variability drive outcome glycemic
variability and hypoglycemic risk (Chase, Compte, et al. 2011) making good control
difficult. In particular, sudden and large rises in insulin sensitivity can result in a
hypoglycemic event when exogenous insulin is given over a typical 3-4 hour measurement
interval. It is critical to determine the size and likelihood of these intra-patient variations,
to enable a more complete understanding of the inherent risks in glycemic control.

Very few studies have examined time-varying evolution of insulin sensitivity and its
variability in the critically ill. Langouche et al. (2007) noted that insulin sensitivity rose
between days 1 and 5 over their large cohorts, but provided no daily or diagnostic specific
evolution. Lin et al. (2008) showed that hour to hour changes for a clinically validated
model-based insulin sensitivity metric could be quite large as a function of current insulin
sensitivity level for a medical Intensive Care Unit (ICU) cohort that covered all diagnostic
categories and days of ICU stay. However, no studies to date have explicitly described
the evolution of intra-patient insulin sensitivity and its variability on a daily basis, or for
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different diagnostic categories.
Such information would provide insight into the risk of hypoglycemia by diagnostic

category and day of ICU stay. Additionally, insight into the likelihood of glycemic
variability resulting from greater or lesser intra-patient variability of insulin sensitivity
could be attained.

This thesis presents the first rigorous statistical analysis of inter- and intra- patient
insulin sensitivity variability as a function of diagnostic category and day of stay. It is
also the first to examine the long-term behavior of insulin sensitivity.

The significance of these can be understood in the light of glycemic control, especially
tight glycemic control (TGC). TGC protocols aim to address specifically this issue.
Glycemic control can reduce negative outcomes (Krinsley 2004; Chase, Shaw, et al. 2008),
but has proven difficult (Casaer et al. 2011; Brunkhorst et al. 2008). Only Chase, Shaw,
et al. (2008) reduced both mortality and hypoglycemia.

2 Directions and Goals of the Research

2.1 Effect of Obesity on Laboratory Parameters

Previous researches in this topic mostly focused on univariate questions (as exemplified
by the above citations). In other words, they were rather association-oriented findings,
i.e. they described changes of a certain laboratory result in obese subjects (as opposed
to the healthy state). To my best knowledge, no investigation addressed the question
how obesity affects the laboratory results from a multivariate perspective (i.e. what is
the effect of obesity if not only individual changes, but also alterations in the correlation
structure of the laboratory results is considered), especially not in children.

Therefore, my primary aim was to investigate how pediatric obesity influences the uni-
and multivariate structure of common laboratory parameters in a precise, uniform way
for all parameters.

The principal novelty of my research lies in the fact that I present a methodology
that integrates the handling of different levels of overweight and obesity using advanced
statistical apparatus.

2.2 Modeling and Evaluating the Performance of Tight Glycemic Control
Protocols

One of the key tasks of such protocols is the prediction of the patients’ insulin sensitivity.
Within this thesis group, I have developed a biostatistical method, which makes it possible
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to model the evolution of a patient’s insulin sensitivity in the context of the predictions
provided by the protocol. The method explicitly incorporates the patient’s diagnosis
and the length-of-stay in the intensive care unit, which can fundamentally influence the
evolution of the insulin sensitivity. The method thus makes it possible to quantitatively
assess the protocol, furthermore it can also provide (even clinical) suggestions on how to
improve the protocol, considering different goals.

3 Materials and Methods of Investigation

3.1 Effect of Obesity on Laboratory Parameters

In the first thesis, I created a novel biostatistical methodology to fulfill the aim defined
above. This thesis also involves the actual implementation of this methodology as a
computer program to provide informatics support in applying this methodology to real-life
databases.

This methodology quantifies the degree of overweight/obesity by the so-called standard-
ized BMI (or Z-BMI) in order to take the effect of growth into account (Cole et al. 2005).
The Z-BMI score is explicitly incorporated in both the univariate and the multivariate
analysis.

In the univariate analysis, the joint probability density function of the investigated
laboratory parameter and the Z-BMI is estimated by kernel density estimation (Wand
and Jones 1995; Silverman 1986), from which a conditional distribution is obtained for
the investigated Z-BMI level. Necessary univariate indicators can be obtained from
this conditional distribution through numerical methods. The univariate association is
characterized with Spearman-ρ non-parametric correlation coefficient (Maritz 1995). To
assess significant associations, Holm–Bonferroni-correction is employed (Holm 1979).

The multivariate analysis follows similar lines, but in that case a three-dimensional joint
distribution is estimated (two investigated laboratory parameters and Z-BMI) with kernel
density estimation, from which a ”conditional correlation matrix” is reconstructed element-
by-element. Possible nonpositive eigenvalues are eliminated through smoothing (Wothke
1993). On this correlation matrix, principal components analysis (Jolliffe 2002) and
cluster analysis (Everitt and Hothorn 2011) is performed.

In the second thesis, I applied this methodology to two concrete, relevant databases: a
representative, large-sample US survey, the so-called NHANES (Centers for Disease Con-
trol and Prevention, National Center for Health Statistics 2013) and a non-representative
Hungarian study, which we performed specifically for this end [F-4], and which – to our
best knowledge – is the first Hungarian survey addressing this question.
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3.2 Modeling and Evaluating the Performance of Tight Glycemic Control
Protocols

To investigate this question, I used the SPRINT protocol, which identifies hourly, model-
based insulin sensitivity (SI) values. SPRINT is a model-based, clinically validated tight
glycemic control (TGC) protocol that provides explicit control for both nutrition intake
and insulin input (Chase, Shaw, et al. 2008). Based on clinical data from n = 390 patients
(47 836 hours) in the SPRINT medical ICU cohort (Chase, Shaw, et al. 2008) hour-to-
hour changes are evaluated for the cohort over all days of ICU stay using a stochastic
model (Lin et al. 2008) that provides kernel density estimation-based distributions of
SI (n+ 1) values (in terms of predicted distribution, i.e. F̂SIn+1) for each current SI (n)
value using all 47 836 data points.

The investigations for SI variability will be based on the accuracy of the predictions
provided, i.e. we will call a patient variable if the predictions are not accurate (the
actual values are not following the predicted distribution). First, the present insulin
sensitivity (SI (n)) is identified, then, the cohort model is used to predict the distribution
of insulin sensitivity at the next time-point (F̂SI(n+1)) for the given SI (n). The actual
(identified) SI (n+ 1) value might be away from the median of this distribution, and
this difference over time going forward is the variability in which we are interested. For
this end, predicted SI distribution (F̂SIn+1) will be confronted with actual SI of the
next hour (SIn+1). Thus, variability was defined by the position of the realized eventual
SI (n+ 1) value relative to its predicted distribution F̂SI(n+1).

I defined two metrics to characterize this variability. The so-called quadratic penalty
measures overall variability, while one-sided threshold penalty measures the potentially
hypoglycemia inducing sudden rises in SI.

To describe these, I use a linear mixed effects model (Pinheiro and Bates 2000; Brown
and Prescott 2006) that includes both time spent in intensive care unit and diagnosis
group of the patient. After performing ANOVA to assess the significance of main effects,
post-hoc testing on significant effects was carried out using Tukey’s Honestly Significant
Differences (HSD) method (Hsu 1996), providing the correction that takes the multiple
comparisons situation into account.
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4 New Scientific Results

Thesis group 1: Effects of obesity on laboratory parameters.
Thesis 1.1:

Thesis 1.1
I have developed a biostatistical methodology (and an associated
computer program) to investigate the effect of obesity on laboratory
parameters. This methodology provides a way to analyze both the
uni- and the multivariate structure of the laboratory parameters,
making the effect of obesity explicit during the process.

Thesis 1.2:

Thesis 1.2
I have provided clinical interpretations for the effects of obesity on
laboratory parameters based on a representative international sur-
vey and a non-representative survey that was performed on Hungar-
ian adolescents specifically for the aims of the present investigation.
I discuss results pertaining to both the uni- and the multivariate
structure of the investigated variables.

Relevant own publications pertaining to this thesis group: [F-1; F-12; F-7; F-2; F-4;
F-21; F-3; F-9; F-5; F-10; F-14; F-13; F-6; F-11; F-18; F-19; F-20; F-17].

Thesis 2. Modeling and Evaluating the Performance of Tight Glycemic Control Proto-
cols.

Thesis 2
I have developed a novel methodology to evaluate and model the
insulin sensitivity variability and its evolution over time for patients
in different diagnosis groups. This also makes the more thorough
investigation of the performance of tight glycemic control protocols
possible.

Relevant own publications pertaining to this thesis group: [F-15; F-8; F-16].
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5 Discussion and Practical Applicability of the Results

5.1 Effect of Obesity on Laboratory Parameters

Univariate examination of laboratory results sheds light on the pathophysiological al-
terations that are associated with obesity. While these changes were mostly already
well-known for particular parameters, I now performed a comprehensive, uniform investi-
gation for 33 routinely measured blood tests.

The analysis of the multivariate structure of the laboratory results reveals groups
of variables that exhibit similar stochastic behavior, pointing to shared physiological
background. On the other hand, this analysis also demonstrated that the correlation
structure of the laboratory parameters is largely unaffected by the degree of obesity and
sex.

The method I proposed for the analysis of the multivariate structure (obtaining
conditional correlation matrices through KDE element-by-element with smoothing being
applied afterwards, and the analysis of these matrices with PCA or CA) lived up to
expectations and was demonstrated to be a useful tool in similar tasks.

These results can be used to deepen our understanding of the pathophysiology of
overweight and obesity, and how these diseases affect the human body. Such understanding
can be then in turn used to optimize prevention and therapy, which has a direct significance
from the public health point of view.

5.2 Modeling and Evaluating the Performance of Tight Glycemic Control
Protocols

Inter-patient variability in insulin sensitivity peaks on day 1 across diagnostic groups
and metrics. Operative – All other patients are more predictable after day 4 than an
all patients and days of stay model accounted for, shown by conservative coverage. The
distribution of overall intra-patient variability assessed per-patient and the mixed-effects
model shows there are distinctive differences between diagnosis groups, irrespective of
the time spent in the ICU. In particular, the Non-operative – Gastric group exhibits the
smallest variability, while Cardiac groups are amongst the most variable. Clinically, these
results show decreasing risk of hypoglycemia as length of stay increases, as well as some
reduction in glycemic variability when all else is equal. The overall results can be used
to guide the design and implementation of glycemic management specific to diagnosis
group and ICU day of stay to improve control and reduce risk.
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