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ȳ tumor volume normalization constant
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time tk

∆yk normalized error between the measured and simulated tumor volumes up to the time
instance tk

δs random effects of a mixed-effect model for time series s

θ fixed-effects of a mixed-effect model

θc vector containing the control parameters of the deform function

p̃∗
a lag one autocorrelation of each time-varying parameter

ξ transformed states of a continuous-time input-affine nonlinear dynamical system

ξ transformed states of a discrete-time nonlinear system

dc cumulative dosage associated with each administration

d sequence of administration doses

g path constraints of an OCP

ps scaling constants for the parameter deviations

p∗
s estimated model parameters of subject s

P ∗
Ms

estimated time-varying parameter for each tumor volume measurement

pavg average model parameters used in the inverse model of the RFPT controller

pc diagonal elements of R

pk model parameters corresponding to the truncated time series yk,uk

r terminal constraints of an OCP

si artificial initial value used in the DMS

w optimization vector, containing states and inputs in the case of the DMS

yW
k ,uW

k previous W number of measurements at time tk and all the inputs between the
endpoints of the window
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yk,uk truncated versions of the vectors yM ,uN up to the time instance tk

yM ,uN vectors, containing measurements and inputs at fixed times, respectively

∆t sampling time of discretization

δ convergence condition of the fixed-point iteration

`i(si, di) integrated stage cost

κi shifting term of the ith administration in the bump function (2.5)

Λ control parameter of a linear controller defined in (3.39)

X,P feasible sets of the states and parameters respectively

E(g) error term between the nonlinear term in the normal form of a system and the virtual
input

Ed(g) error term between the nonlinear term in the discrete time normal form of a system
and the virtual input

G(E(g), g, θ) deform function

N (0,Σ) normal distribution, centered at zero with covariance matrix Σ

Tc nonlinear coordinate transform of a nonlinear continuous-time input-affine dynamical
system

Td nonlinear coordinate transform of a discrete-time dynamical system

U(lx, ux) uniform distribution with bounds lx and ux

Vr,Vo robust and optimal virtual populations

µ approximation term in the bump function (2.5)

µ1, µ2, µ3, µ4, µ
u
i scaled state and input variables in the ODE model

� element-wise division between two vectors

Φ(x, u) state transition vector field of a nonlinear discrete time system

Ψ(x, y) inverse model of a discrete time nonlinear system

τi time of the ith drug administration

εsk noise on the k-th observed value of time series s

a, b, n, w,ED50, c, k1, k2,KB model parameters, listed in Table 2.1

Ag, Bg,Kg Control parameters of the deform function (3.38)

di amount of the ith drug administration

dsum total dose administered to a mouse

E(x(T )) terminal cost of an OCP

f, g, h vector fields of a continuous-time input affine nonlinear system
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f∗, g∗, h∗ vector fields of a continuous-time input affine nonlinear system with perturbed
parameters

g deformed variable

g∗ fixed point for which E(g∗) = 0

Jk kth optimization problem of the FIE

JT cost function of an optimal control problem (OCP) on a fixed interval T

K gain matrix of a state-feedback controller

L(x(t), u(t)) stage cost of an OCP

Lfh Lie derivative of the vector field h along the vector field f

M number of measurements in a given time series

Mg number of fixed-point iterations

p p-value of the logrank test

pcl closed-loop poles of the state-feedback controller

q relative degree of a dynamical system in Chapter 3

r control parameter in Section 4.2

R diagonal weighting matrix for the parameter deviation in (4.5)

RMSEs Root Mean Square Error of subject s

Si,j jth subject of the ith experiment

Si,j j-th subject of the i-th experiment

tk time of the kth tumor volume measurement

tsurvival day on which mouse is terminated

u time function of the injection rate

usum, esum total amount of drug administered and sum of the tracking error at the end of
an experiment

v virtual input of an IO linearized continuous-time input affine nonlinear system

W number of measurements in the moving horizon of the MHE

X,U, Y state, input, and output spaces respectively

x1 time function of the living tumor volume

x2 time function of the dead tumor volume

x3 time function of the drug level in the central compartment

x4 time function of the drug level in the peripheral compartment

x1c, x2c, x3c, x4c scaling constants of the states in the ODE model
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yref tumor volume setpoint to be tracked

yi value of the kth tumor volume measurement

ysk kth observed value of time series s

11



12

Acknowledgements

The work conducted during my Ph.D. program would not have been possible without the
extensive help, both professional and personal, that I have received throughout the past
years of my life. First, I would like to express my sincerest gratitude to Dr. Levente Kovács,
who introduced me to the research topic and provided a lot of major additional support
throughout the years behind me. I would also like to thank the excellent guidance of Dr.
Dániel András Drexler, who has provided me with a significant amount of professional
advice during my research period and always pointed me toward the correct decisions. I
believe that with their help, the final result of my work has a significantly higher value.
I have also received great support from Dr. Gergely Szakács, Dr. András Füredi, and the
whole staff at the Institute of Enzymology at the Eötvös Loránt Research Network, who
provided me with the opportunity to in vivo validate the algorithms, designed in this work.
In addition, I will also be grateful to Dr. Krisztián Kósi, whom I received a great deal of
help throughout my undergraduate studies at the university. I am also thankful for the
colleagues at the Physiological Controls Research Center of Óbuda University, who made
the boring parts of the research colorful. On a personal side, I am obliged to my family and
friends, who always considered the best for me and were always there. Their support was
paramount during the past four years of my Ph.D. studies.



1
Introduction

The general treatment of cancerous diseases can be considered as one of the most chal-
lenging problems in modern medicine. In 2022, approximately 1.25 million people die
from some variants of this illness in the European Union [R1]. While the numbers are
decreasing due to better screening procedures, there has not been a single effective treat-
ment developed that can stop the illness completely. The most commonly available treat-
ment options are still surgery, radiotherapy, and chemotherapy. In order to improve the
effectiveness of these therapies, individual treatment plans can be designed, which are
tailored to the physiological and biological attributes of the patient. Since radiotherapy
and chemotherapy also involve various side effects during the treatment period, individu-
alization can also alleviate these negative consequences, thus improving the overall qual-
ity of life of the patient. In the case of chemotherapy, individualization means that one
wishes to administer the least amount of drug during therapy that still ensures remission
of the disease. Throughout my dissertation, I use methods from control theory to generate
administration protocols for chemotherapy, using mathematical models that describe the
treatment process. These models are able to predict the evolution of the tumor and can be
used to calculate the optimal amount of drug that must be given to the patient. In addi-
tion, if one is able to regularly measure some aspects of the tumor that provide information
on its evolution (e.g., its volume), the therapy can further be optimized, which leads to a
closed-loop control scheme.

In the case of chemotherapy, another key issue is drug resistance, where the tumor
adapts to the effect of a given drug and is no longer sensitive to each consecutive treat-
ment. If the effect of drug resistance appears during treatment, the only viable option to
continue the treatment is to change the applied chemotherapeutic agent, which can further
put a strain on the already ill patient. Individualization of the treatment could also pro-
long the effectiveness of the given drug, which also justifies the aim of the current research
[R2]. Metronomic therapy might also be a viable option to delay (or even avoid) drug resis-
tance during the treatment, as reported in [R3]. In the case of metronomic chemotherapy,
smaller doses are given to the patient more frequently, as opposed to conventional treat-
ment schemes [R4]. Since the performance of a closed-loop control algorithm increases if
the system can be controlled at any desired time instance, metronomic therapy can provide
a better basis for the individualization.

Literature on chemotherapy optimization dates back to the beginning of the 1970s. Ini-
tial effort was put in the development of simulation models based on in vitro experiments
and first principle assumptions [R5]. These models were then applied in the context of opti-
mal control, for example as can be seen in [R6]. A survey on the results of the first ten years
in the domain of optimal control of tumor growth models can be found in [R7]. These initial
results heavily relied on explicit formulations of the optimal control problems, without the
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14 1. Introduction

use of sophisticated numerical solvers. With the development of computational resources,
researchers started to use numerical optimization algorithms to solve these optimal con-
trol problems. Moreover, soft computing techniques, and heuristics were also employed,
which, together with the classical approaches, can be found in the survey by Shi et al. [R8]
and Sbeity et al. [R9]. Some of the most recent results involve the use of Nonlinear Model
Predictive Control (NMPC), Moving Horizon Estimation (MHE), and impulsive differential
equations as can be seen in Chen et al. [R10] and Belfo et al. [R11].

In my work, I used two different strategies to control the tumor in a model-based man-
ner. The first method was the Robust-Fixed-Point Transformations (RFPT) based non-
linear control algorithm, which is able to handle structural and parametric uncertainties
of a nonlinear system. Since physiological control often involves both uncertainties, the
RFPT was a promising candidate to solve the problem. While the method is less mature
than other nonlinear robust techniques, including Sliding Mode Control, Adaptive Control,
and Backstepping Control, it has several benefits that make it preferable. The first and
foremost advantage lies in the simplicity of the controller design. The hardest part of the
design is the computation of the inverse model, which can be automatically performed in
Wolfram Mathematica. In the case of the other methods, a Lyapunov function is most of-
ten sought, which requires extensive trial and error computations. Additionally, the most
robust method can either deal with structural or parametric uncertainties but not both,
which makes the current choice even more attractive. Aside from using the RFPT method
for control design in this dissertation, I also wanted to contribute to its theoretical de-
velopment since I believe the method can be a viable alternative to other existing robust
techniques based on prior experience.

The second approach was the use of Nonlinear Model Predictive Control (NMPC) and
Moving Horizon Estimator(MHE), which are standard, optimization based control and esti-
mation algorithms in the field of nonlinear control. While robustness is, in general, harder
to ensure in the case of NMPC, the method permits the incorporation of various constraints
during the optimization in a simple way. Therefore, accounting for the benefits and draw-
backs of both approaches, I have decided to test both in my dissertation.

1.1 Robust Fixed-Point Transformation

The idea of using fixed-point iteration in nonlinear control was introduced by Tar and
Rudas [R12]. A key motivation behind the development of the control method was to
provide an alternative to the use of Lyapunov functions in adaptive control. The RFPT
uses a linear controller to produce a reference trajectory, which is then further manipu-
lated by a deform function. The deform function induces a fixed-point iteration, which can
mitigate the effect of structural and parametric uncertainties between the plant and its
inverse model. The role of the inverse model is to compute the input signal of the system
corresponding to a certain desired reference trajectory, which is produced by the linear
controller. The closed-loop block diagram is illustrated in Figure 1.1. Initial directions in
the research focused on the development of general deform functions that can be applied
to a wide variety of nonlinear systems as can be seen in [R14, R13] and [R12]. Multiple-
input multiple-output extensions of the algorithm have been also considered in [R15] and
[R16]. Preliminary results on the stability of the controller were also discussed in [R17]
and [R18].

There is a wide variety of application examples ranging from mechanical systems ([R20,
R19]) to problems in physiological control as well ([R21]). A study on the implementation
of the algorithm on a double-rotor test bench can be found in [R22].
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1.2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is an optimization-based method in the con-
text of nonlinear control [R23, R24]. At each control time instance, the controller optimizes
a cost function through a sequence of control actions that alter the behavior of the simu-
lated system. The optimal solution then minimizes some quantifiable goals incorporated in
the cost function and also complies with constraints that are imposed on the optimization
problem. The control action at the current time is then the first element of the vector of
control variables, and the process is repeated at the next control time instance. The cost
function often contains terms that penalize the control goal and the control effort in some
sense. In the case of therapy optimization, the control goal is to force the tumor volume
to be as small as possible, while the control effort is characterized by the amount of drug
given during the prediction, which should also be minimal.

1.3 Moving Horizon Estimation

NMPC requires state estimates of the underlying process to be able to predict the evolution
of the system during the optimization of the doses. In the case of chemotherapy optimiza-
tion, there is a vastly limited number of measurement channels that are available, thus
state estimation is a necessary part of the algorithm.

Moving Horizon Estimation is a state estimation technique for nonlinear systems, which
can be considered to be a dual problem of the NMPC. It is both capable of the estimation
of time-varying parameters and the corresponding state estimates [R23]. The goal in the
case of MHE is to find an optimal estimate of the current state of the process using a fixed
number of previous measurements with respect to a cost function. Akin to its counterpart,
MHE is also an optimization-based technique that uses the dynamical model of the system
to provide additional insight into the observed process. The strategy is also capable of han-
dling time-varying parameters of a given model, thus proving to be a reasonable candidate
for capturing the adaptation strategy of the disease to the drug. Furthermore, MHE has a
special case called the Full Information Estimator, where the window size of the estimator
is equal to the number of every available measurement. This can be useful for estimating
model parameters and tuning the MHE which will be demonstrated later in the work.

Linear

controller

System

Deform

function

Inverse

model

Figure 1.1: Block diagram of the RFPT method in discrete time. The variable rk denotes the
reference trajectory, vk is the trajectory corrected by a linear control law, gk is the output of
the deform function, uk is the input, and yk+1 is the response of the nonlinear system.
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1.4 Experimental validation and iterative design

The optimal control algorithms designed in my dissertation were tested in vivo through
mice experiments. Each experiment provided additional insight that could be used to im-
prove the algorithms. As a consequence, multiple different implementations of the MHE-
NMPC scheme were carried out, and these were further tested with new experiments. In
the case of the NMPC, the central issue that had to be solved was that the algorithm often
encountered convergence issues at different optimization time instances. It became clear
during my research that this issue primarily originated from both the scaling of the state
variables and the large variation between the model parameters. In the last iteration of the
controller design, the convergence issues were completely eliminated by modifying the cost
function of the optimization problem and obtaining additional experimental data, which
improved the accuracy of the model parameters.

In Figure 1.2. a flowchart is presented, which shows the components of the algorithm
in its current state. Moreover, the figure serves as a blueprint on how the algorithm can
be fine tuned with additional experimental data in the future. After a finished experiment
SN , all the experimental data are aggregated S = {S0, . . . , SN}, which is then used in
the FIE to compute initial model parameters P = {p∗

0, . . . , p∗
M}, where M is the number

of subjects from all the experiments. These initial model parameters are then used in
the SAEM algorithm to create mixed-effect parameters with a fixed-effect vector θ and
covariance matrix Σ. Using the updated θ, the MHE is tested on all the experimental
data. Additionally, using θ, and Σ two virtual populations are generated to tune the gain
of the NMPC controller, and to validate the combined MHE-NMPC algorithm in silico. If
the in silico validation is successful, the algorithm can be tested in vivo.

1.5 Chronological order of the research

The contents of the thesis were organized such that parts of the control design were log-
ically separated, instead of following a chronological order of the research. Nevertheless,
in order to clarify certain design decisions, the timeline of the research should also be pre-
sented. The following list describes certain phases of the work:

1. Controller design and methodological research on the RFPT controller, using data
from [R25]. In silico validation of the method using the model with three state vari-
ables [C1, C2, C3, C4].

2. Implementation of the first iteration of the NMPC controller to the model with three
state variables, in silico and in vivo validation of the design using the same parameter
set as in the case of the RFPT [C5, C6].

3. Implementation of the second iteration of the NMPC controller with the virtual popu-
lation-based tuning rule. Utilization of derivative-free optimizers and constraint on
the cumulative toxicity. Experimental validation of the design, using the previous
MHE implementation with minor changes [C7].

4. Complete redesign of the MHE, and the implementation of the FIE. Introduction of
the scaling terms in the NMPC and the complete elimination of all numerical issues
regarding its convergence. Experimental validation of the new controller without
initial identification dose [C8].
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1.6 Outline of the thesis

In Chapter 4.1.3., the tumor growth models are presented, with different possible dosing
schemes. Chapter 3. describes the mathematical formulation of the RFPT approach. In
particular, the basics of the Input-Output linearization are presented, from which different
variants of the RFPT approach were derived and tested in silico. In Chapter 4., I present
the parameter estimation problem, and introduce the FIE and the MHE respectively, with
the obtained parameters calculated from the experiments. The theory of the NMPC is
presented along with the different iterations of the design with their in silico validation. In
Chapter 5., the in vivo experiments are presented. The conclusions are drawn in Chapter
6.
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Figure 1.2: Flowchart of the iterative design for the NMPC-MHE approach.
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Tumor growth models

The control algorithms presented in the dissertation require a model of the controlled sys-
tem. Such a model should be able to describe the dynamics of the tumor in conjunction
with the administration and elimination of the drug. Hence, a tumor model is discussed in
this chapter, which is able to capture these aspects of the biological process.

There is a large variety of models which captures key mechanisms of tumor growth,
demonstrated in the survey of [R26]. In my work, I was primarily focusing on the use of
ordinary differential equation-based models, which are useful in the description of time
series that are dependent on a single independent variable. Moreover, one can make a
distinction between macroscopic and microscopic models that describe the evolution of the
tumor [R27]. In the case of microscopic models, interactions are modeled at the cell level,
which often entails a complex model with a significant number of state variables and model
parameters. Since the current technology only permits the measurement of a limited num-
ber of properties of the tumor, identification of the parameters of these models is difficult or
even intractable in many cases [R28]. By contrast, macroscopic models describe the overall
behavior of the system, only using a few state variables, which is suitable for estimation
and control design. This loss of complexity, however, limits the predictive power of the
model and thus the use of time-varying model parameters has to be considered.

In my dissertation, the tumor growth model describes the evolution of breast cancer in
a clinically relevant, genetically engineered mouse model. In this mouse model Brca1, a
DNA repair gene, and p53 a regulator of cell cycle and genome stability, were knocked
out in breast epithelial cells. Mammary tumors obtained in this way highly resemble
the Brca1-linked, triple-negative, hereditary breast cancer in humans, since their molecu-
lar, immunohistochemical, morphological, and genetic characteristics are almost indistin-
guishable from their human counterparts [R29]. These tumors also respond to chemother-
apy very similarly, as an initial treatment with doxorubicin, docetaxel or cisplatin signif-
icantly reduce tumor size and induce remission. As a consequence, findings obtained by
using this mouse model are frequently translated to human cancer clinics due to their
similarity to human breast cancer.

Unfortunately, long-term therapy often fails due to the emergence of drug resistance
[R31, R30], and most of the novel therapeutic approaches to tackle it are in the early
developmental phase [R34, R33, R32]. The chemotherapeutic drug used in the experiments
was pegylated liposomal doxorubicin (PLD). While it was demonstrated in previous works
that the drug increases relapse-free and overall survival by 6- and 3-fold respectively, these
tumors cannot be cured using conventional chemotherapy regimens [R25].

Based on the previous biological considerations, the input of the system is the amount
of PLD that is administered to the subjects via injections at a given day τk [day]. The time
of administrations are denoted with τi ∈ R+, i ∈ N0 for which the ordering τ0 < τ1 < · · · <
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20 2. Tumor growth models

Figure 2.1: Visualization of the model. Here, x1 is the living tumor volume (pink region),x2
is the dead tumor volume (purple region), x3 is the concentration of drug in the blood (red
region), x4 is the concentration of the drug in the peripheral compartment, and u denotes
the rate of injection.

τi < · · · < τN holds, and the amount of the drug is denoted by di = d(τi) ∈ R+ [mg/kg].
In practice, the size of the tumor implanted under the skin of the mice can be measured
using calipers during the experiment. By measuring the width and length of the tumor, its
volume y ∈ R+ can be approximated as

yk = y(tk) =
π

3
(length(tk) · width(tk))

3
2 , (2.1)

according to the formula derived in [R35], where tk ∈ R+, k ∈ N0 [day] is the measurement
time instance, and t0 < t1 < · · · < tk < · · · < tM . This quantity will be the only output of the
system, since taking measurements from other channels is technologically or economically
infeasible currently.

Throughout my dissertation, I used two macroscopic tumor growth models, adapted
from [R37, R36], which describe the tumor dynamics, pharmacokinetics, and pharmacody-
namics of the drug. The first model has the form

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2

ẋ3 = −c
x3

KB + x3
+ u

y = x1 + x2

(2.2)

where x1 ∈ R+ is the living tumor volume in [mm3], x2 ∈ R+ is the dead volume in [mm3],
x3 ∈ R+ is the level of drug in the host measured in [mg/kg] and u ∈ R+ is the injection
rate in [mg/kg/day].

Further research showed that by augmenting the model with a fourth state, that re-
lates to the drug concentration in a peripheral compartment, the model can describe the
pharmacokinetics of the drug more accurately [R36]. The augmented model is
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ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2

ẋ3 = −(c+ k1)x3 + k2x4 + u

ẋ4 = k1x3 − k2x4

y = x1 + x2,

(2.3)

where x3 ∈ R+ now is the time function of the drug level in the central compartment
[mg/kg], and x4 ∈ R+ is the time function of the drug level in the peripheral compartment
[mg/kg]. The input u ∈ R+ is the time function of the injection rate [mg/kg/day], while
the output y ∈ R+ [mm3] is given as the total tumor volume. A description of the model
parameters with their corresponding dimensions can be seen in Table 2.1. and simple
visualization of the system is depicted in Figure 2.1.

An important property of both systems is positivity, which means that all the states, the
input, the output, and the model parameters have to be strictly positive for the model. This
has two immediate consequences in the control design case: the input signal must be con-
strained to be positive (i.e., no drug can be extracted from the body), and the corresponding
state trajectory must be positive for all times (resulting in positive tumor volumes).

Both models can be continuously controlled through the input variable u, which must
be transformed into a sequence of impulses to mimic realistic administration schemes via a
series of injections. One possibility is to omit the term u from the differential equations and
apply the dose directly to the corresponding state variable x3, which leads to an impulsive
differential equation [R38]. Each τi introduces an interval (τ0, τ1], (τ1, τ2], . . . , (τi, τi+1], . . . ,
on which the model is piece-wise defined with the rule

x(τ+i ) = x(τ−i ) + [0 0 1 0]ᵀ di. (2.4)

The impulsive effects are characterized by x(τ+i ) = limh→0+ x(τi + h) in conjunction with
x(τ−i ) = limh→0+ x(τi−h). Equation (2.4) means that the system is simulated from τi to τi+1

with the initial condition that is the endpoint of the previous simulation, modified with the
input value di.

My initial approach was to represent the impulses using Dirac delta approximations by
redefining the input in (2.2) such that

u = u(t, τ ,d) =


di
2µ

(
1 + cos

(
π(t− κi)

µ

))
, τi ≤ t ≤ τi + 2µ

0, τi + 2µ < t < τi+1

(2.5)

where τ ∈ RN contains the input time instances, d ∈ RN contains the corresponding doses,
µ controls the approximation, κi = τi + µ is the shifting term and t ∈ [τ0, τN ] [C5]. This
is a compactly supported smooth approximation of the Dirac delta distribution where the
smoothness property could be favorable when using gradient-based optimizers. In simple
terms, this formalism essentially places a Dirac impulse in the beginning of each interval
(ti, ti+1]. Since the integral of (2.5) with di = 1 is one, di can be interpreted as the amount
of drug that is injected into the patient directly. In order to determine the approximation
parameter, it can be taken into account that one administration takes approximately 15
seconds in mice, which yields the choice µ = (15/86400)/2 [day].

In order to use the model for predictive purposes, its parameters have to be estimated
from time series data. During the estimation, a number of issues must be addressed which
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Table 2.1: Model parameters and their dimensions. Each model parameter is a positive
real number.

Parameter Unit Description

a 1/day Tumor growth rate
n 1/day Tumor necrosis rate
b 1/day Drug efficacy rate

ED50 mg/kg Median effective dose
w 1/day Dead tumor cell washout
c 1/day Clearance rate of the drug
k1 1/day Pharmacokinetic parameter
k2 1/day Pharmacokinetic parameter
KB mg/kg Michaelis-Menten constant

stem from the lack of data, inter-patient variation in the parameters, and technical diffi-
culties in the estimation algorithm (e.g., proper choice of the initial parameter value of the
estimation).

If repeated experimental data is available on the same process, a standard estimation
technique is to consider the parameters to have mixed effects, which consist of fixed effects
that describe the population in an average manner, and random effects that pertain to each
individual sample. By using mixed effects, the inter-patient correlations can be meaning-
fully represented by an associated probability distribution. Moreover, the increased num-
ber of data that is taken into account during the estimation entails more precise parameter
values.

In previous works, the Stochastic Approximation of Expectation Maximization (SAEM)
was used to obtain mixed-effect parameters for the model [R36]. While it is possible to fit
the model to the data using the method, the quality of the estimation often remains unsat-
isfactory. Since SAEM is an iterative algorithm, this problem can be largely attributed to
the difficulty of finding a proper initial parameter vector for the estimation. Furthermore,
the estimation algorithm does not allow the use of parameter constraints, which may result
in unexpected behavior in the model. For example, one might obtain a parameter set that
ensures a good fit on the measurement data, but the parameter c is so small that there
is essentially no depletion of the drug, which is physiologically unreasonable. In Chap-
ter 4, a solution to these problems is presented, and time-varying parameters will also be
considered.
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Robust Fixed-Point Transformations

Thesis 1: Model-based control using the RFPT approach

Thesis 1
I contributed to the theoretical description of the RFPT method
by connecting it with the Input-Output (IO) linearization prin-
ciple. Moreover, I developed a functional fixed-point iteration
based variant of the algorithm in conjunction with a purely
discrete-time version. I also tested the viability of each differ-
ent strategy in silico on a tumor growth model.

Publications relevant to the theses: [C3, C2, C1].

My initial research objective was to prove that the system can be controlled continu-
ously and to investigate the robustness of the given algorithm. For this reason, I designed
various RFPT-based controllers, which I tested on the previously introduced models. More-
over, I also connected the methodology to the IO linearization principle in a rigorous man-
ner, from which a number of possible implementations of the base idea emerged.

3.1 Continuous time Input-Output linearization

Consider the following nonlinear input-affine dynamical system

ẋ = f(x) + g(x)u

y = h(x)
(3.1)

where x(t) ∈ Rn is the state vector at time t, u(t) ∈ R is the system input at time t, while
y(t) ∈ R is the output of the system at time t, where t ∈ R+, and f, g, h are smooth vector
fields. Differentiating the output leads to

ẏ =
∂h

∂x
ẋ =

∂h

∂x
[f(x) + g(x)u] , Lfh+ Lgh u (3.2)

where Lfh and Lgh are the Lie derivatives of h along the vector fields f and g, respectively.
The notation admits the property [R39]

L0
fh = h

Lk
fh = LfL

k−1
f h =

∂(Lk−1
f h)

∂x
f, k ≥ 1.

(3.3)

23
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One can assume that the control input u appears first in the qth derivative of the output
which poses the condition

LgL
q−1
f h =

∂(Lq−1
f h)

∂x
g 6= 0. (3.4)

where q is called the relative degree of the system.

Definition 1 (Relative degree). The nonlinear system (3.1) has relative degree q (1 ≤ q ≤ n)
in a region D0 ⊂ D, if

LgL
i−1
f h(x) = 0, i = 1, .., q − 1

LgL
q−1
f h(x) 6= 0

(3.5)

for all x ∈ D0.

I also assumed that the relative degree equals the state dimension, i.e., q = n, which
involves no zero dynamics in the normal form of the system. While this choice limits the
generality of the presented method, the exposition becomes simpler with fewer technical
details. A comprehensive work on the treatment of zero dynamics can be found in [R40].
based on this assumption, one can define the following coordinate transformation


ξ1
ξ2
...
ξq

 = Tc(x) =


h(x)

Lfh(x)
...

Lq−1
f h(x)

 (3.6)

where Tc : Dx ⊂ Rn → Dξ ⊂ Rn must be a diffeomorphism. This transformation maps the
system to the normal form

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇q−1 = ξq

ξ̇q = α(ξ) + β(ξ)u

y = ξ1.

(3.7)

In its normal form, the system can be divided into two distinct parts. There is a linear part
that contains a chain of integrators, and a single nonlinear equation with the terms

α(ξ) = [Lq
fh(x)]x=T -1

c (ξ)

β(ξ) = [LgL
q−1
f h(x)]x=T -1

c (ξ).
(3.8)

Using the nonlinear equation in (3.7) the input is defined as

u =
v − α(ξ)

β(ξ)
(3.9)

which cancels out the nonlinearities, hence ξ̇q = v, where v is called the virtual input.
Combining equations (3.7) and (3.9) one obtains a linear system

ξ̇ = Aξ +Bv

y = Cξ,
(3.10)

which can be stabilized in the origin by the static state feedback v = −Kξ, using pole
placement to determine the gain matrix K.
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3.2 Continuous RFPT

Suppose that equation (3.9) is derived from an imprecise model with vector fields f∗, g∗, h∗,
which are structurally identical to f, g, h in (3.1). It is further assumed that no bifurcation
is caused by parametric uncertainties so that the equilibrium properties of the system
remain the same. Using (3.7) and (3.9) one obtains

ξ̇q = α(ξ) + β(ξ)

(
v − α∗(ξ)

β∗(ξ)

)
(3.11)

with imprecise terms in the inverse

α∗(ξ) = [Lq
f∗h

∗(x)]x=T -1
c (ξ)

β∗(ξ) = [Lg∗L
q−1
f∗ h∗(x)]x=T -1

c (ξ).
(3.12)

In (3.11), one can see that the nonlinearity of the system becomes more complex since the
inverse model does not cancel out the relevant terms. This means, that the control law
produced by the linear controller not necessarily stabilizes the nonlinear system. In order
to circumvent this issue, the following error term is defined [C2]

E(g) = α(ξ) + β(ξ)

(
g − α∗(ξ)

β∗(ξ)

)
− v (3.13)

where v is given by the state feedback controller, g is a new input that will be manipulated
so that (3.13) is satisfied and E(ξ, g, v) = E(g) : Rq × R × R → R. The task is to find
a solution g∗, which forces E(g) to be zero, thus ensuring that ξ̇q = v. The solution can
be found using fixed-point iterations, which is a standard method utilized in root-finding
problems. First, the equation E(g) = 0 is converted into a fixed-point form, from which the
fixed-point iteration is given by

E(g) + g = g → E(gi) + gi = gi+1, (3.14)

where i ∈ N+ is an iteration index, independent of the sampling time. This is a func-
tional equation in g(t), where the solution satisfies E(g∗) = g∗ = 0. In order to assess
the convergence of the iteration, using the Banach Fixed-Point Theorem, one has to define
k-contractive operators [R41].

Definition 2 (k-contractivity). An operator F : M ⊆ X → X on a metric space (X, d) is
called k-contractive on M if

d(F (x), F (y)) ≤ kd(x, y) (3.15)

with fixed 0 ≤ k < 1 and for all x, y ∈ M .

Contractivity of continuous operators can be verified by the following condition [R41]

||F ′(g)|| ≤ k < 1. (3.16)

If the operator F is k-contractive, the Banach Fixed-Point Theorem guarantees the conver-
gence of the associated iteration.

Theorem 1 (Banach Fixed-Point Theorem). If a given operator F : M ⊆ X → X is k-
contractive on M then F admits a unique fixed point on M , i.e., F (r∗) = r∗, and r∗ can be
obtained by successive iterations in the form of F (rn) = rn+1 for an arbitrary r0 ∈ M .
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In the current scenario, g ∈ M ⊆ X lies in the Banach space of Lebesgue measurable
functions on a finite interval [0, t] with finite essential supremum X = L∞([0, t],R), and the
operator is F : E(g) + g. Consequently, if∣∣∣∣∣∣∣∣dE(g)dg

+ 1

∣∣∣∣∣∣∣∣ < 1 (3.17)

holds, then the parametric errors can be eliminated between the plant and the nominal
model. However, in the vast majority of cases, the condition does not hold due to the
nature of the error term E . In order to modify the inherent behavior of E , a deform function
can be introduced as

G(E(gi), gi,θg) = gi+1 (3.18)

with the property
G(E(g∗), g∗,θg) = g∗ → E(g∗) = 0 (3.19)

whence G(E(g), g, v,θ) = G(g) : R × R × R × Rm → R is the deform function, with initial
condition g0, parametrized by θg ∈ Rm, where m is the number of control parameters. Once
the structure of the deform function can handle the nonlinearities, proper choice of θg will
render the iteration (3.18) convergent due to the Banach fixed point theorem. In practice,
only a fixed number of iterations can be performed, such that i ∈ {0, . . . , Mg}. The closed
loop system is then defined by the following set of differential equations [C2]

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇q−1 = ξr

ξ̇q = E(gMg) + v

gi+1 = G(E(gi), gi,θg)
v = −Kξ

y = ξ1.

(3.20)

The initial condition of ξ(0) is problem dependent, while g0 can be determined by supposing
that no parametric uncertainty is present, from which g0 = v.

3.3 Discretization and real-time iteration

Eliminating the parametric errors in E(g) can also be performed online by discretizing
equation (3.11) [C1]. Using Euler discretization (or any other numerical method without
loss of generality) with sampling time ∆t > 0 leads to

ξ+q = ξq +∆t

[
α(ξ) + β(ξ)

(
v − α∗(ξ)

β∗(ξ)

)]
(3.21)

where ξ := ξ(k∆t), v := v(k∆t) and ξ+ := ξ((k+ 1)∆t), k ∈ N0. To render the system linear,
one can postulate a similar requirement to (3.13), namely

E(g) = α(ξ) + β(ξ)

(
g − α∗(ξ)

β∗(ξ)

)
− v (3.22)

where g := g(k∆t). Because of the discretization, the associated fixed-point iteration is no
longer function, but scalar-valued, hence g ∈ R. Since the previous observations on fixed-
point convergence of E(g) holds here as well, the deform function (3.18) must be included
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in the closed-loop to ensure proper convergence:

ξ+1 = ξ1 +∆tξ2
...

ξ+q = ξq +∆tE(g)
g+ = G(E(g)− v, g,θg)

v = −Kξ

y = ξ1.

(3.23)

If the requirement ∣∣∣∣∣∣∣∣dG(E(g), g,θg)dg

∣∣∣∣∣∣∣∣ < 1 (3.24)

can be ensured in each k step, the sequence g → g∗ could render the system to be linear in
a fixed number of steps, whence the state feedback can stabilize the system in the origin.
The initial condition of g0 can be determined by supposing that no parametric uncertainty
is present, from which g(0) = v(0).

3.4 Discrete-time input-output linearization

I have also carried out a purely discrete-time variant of the algorithm. In the discrete-time
scenario, a more general approach must be considered, since the result of the discretization
of a nonlinear differential equation is seldom input-affine. A compact, but detailed descrip-
tion of the discrete linearization process can be found in [R42]. Consider the following
nonlinear discrete-time dynamical system:

x+ = Φ(x, u)

y = h(x),
(3.25)

where x := x(k) ∈ X ⊂ Rn is the state vector at time step k with forward shift operator
x+ = x(k+1) ∈ X ⊂ Rn, u(k) ∈ U ⊂ R is the input at time step k, y(k) ∈ Y ⊂ R is the output
at time step k, where k ∈ N0, and both X and U are open and connected, containing the
origin. Moreover, Φ(x, u) is a smooth vector field on X ×U and h(x) is a smooth scalar field
on X. In the continuous case, the underlying idea of the IO linearization principle was
to differentiate the output of the system until the input signal explicitly appears in the
rth derivative of the output. In the discrete-time case, rather than using the differential
operator, the composition operator must be employed. Thus, the vector field Φ(x, u) is
iterated in its first argument r times, then composed with the output function h(x). The
iteration of Φ is then defined as

h0(x, u) = h(x)

h1(x, u) = h ◦ Φ(x, u)
...

hj(x, u) = h ◦ Φ(Φj−1(x, u), u)

(3.26)

which is precisely equal to the output delayed by j steps, i.e.,

y(k + j) = hj(x, u). (3.27)

In the discrete case, the relative degree q means that at the kth time step, the control
signal u will explicitly alter the system after q consecutive steps. Based on the previous
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considerations, one can obtain the following relation:

∂

∂u
hj(x, u) =

∂h(x)

∂x

(
∂Φ(x, u)

∂x

)j−1∂Φ(x, u)

∂u
(3.28)

from which the definition of the discrete-time relative degree arises.

Definition 3 (discrete-time relative degree). The discrete-time nonlinear system (3.25) has
a relative degree 1 ≤ q ≤ n in a region D0 ⊆ D if

min
q∈N

∂h(x)

∂x

(
∂Φ(x, u)

∂x

)q−1∂Φ(x, u)

∂u
6= 0 (3.29)

for all x ∈ D0.

If the relative degree of the system is finite, it implies that the relation

y(k + q) = hq(x, u) (3.30)

is locally solvable in u by the inverse function theorem, thus

u = Ψ(x, y(k + q)) (3.31)

where Ψ(x, y(k + q)) is the inverse model and assumed to be well-defined and unique on
X × h(X). It is further assumed that the relative degree is maximal, i.e., q = n so that
there is no zero dynamics present in the transformed system akin to the continuous case.
Define the locally invertible state transformation

ζ =


ζ1
ζ2
...
ζq

 = Td(x) =


h0(x)
h1(x)

...
hq−1(x)

 (3.32)

which leads to the normal form

ζ+1 = ζ2

ζ+2 = ζ3
...

ζ+q−1 = ζr

ζ+q = hq(T -1
d (ζ), u)

y = ζ1.

(3.33)

Using the inverse model (3.31) with y(k + q) = v, a linear system of difference equations
can be obtained with ζ+q = v. The equations can be represented in the more compact state
space notation

ζ+ = Aζ +Bv

y = Cζ
(3.34)

for which a static state feedback can be constructed in the form of v = −Kζ such that
the system ζ+ = (A − BK)ζ is stabilized in the origin. Suppose that the inverse model
is derived from an imprecise model in the form of (3.25) with Φ∗(x, u) and h∗(x). It is
assumed that the imprecise model only differs in its parameters which does not cause
any bifurcation in the qualitative behavior of the system. Using the inverse model and
combining with (3.33) leads to

ζ+q = hq(T -1
d (ζ),Ψ∗(x, v)) (3.35)
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where Ψ∗(x, v) is the imprecise inverse model containing Φ∗(x, u) and h∗(x). The following
steps are essentially the same as in the case of the continuous inverse model. One can
introduce the requirement

Ed(g) = hq(T -1
d (ζ),Ψ∗(x, g))− v (3.36)

where g := g(k) is an auxiliary control variable. The root g∗ is sought again for which
Ed(g∗) = 0 is true, which is found by using a deform function, with the property (3.19) that
defines a fixed point iteration similarly as in (3.18). The final closed-loop system then takes
the form of

ζ+1 = ζ2
...

ζ+q = Ed(g) + v

g+ = G(Ed(g), g,θg)
v = −Kζ

y = ζ1

(3.37)

One can postulate again that if the deform function has the property (3.24), the controller
will stabilize the system in the origin via state feedback.

3.5 Practical considerations and limitations

Several deform functions were introduced throughout the literature, including [R16, R43].
In my thesis, the following deform function was utilized, originating from [R44]:

G(E(g)− v, g,θg) = (g +Kg)(1 +Bgtanh(Ag(E(g)− v)))−Kg, (3.38)

where θg = [Ag, Bg, Kg]
ᵀ. Due to the nonlinear nature of the controller, there is no stan-

dard process to tune the parameters. Nevertheless, a number of heuristics can be used to
find the parameters of (3.38), where Kg is set to be a large positive number, Ag is usually a
small number with Ag = 1/(10 ·Kg) and Bg is either 1 or −1.

The state feedback controller can be replaced by other linear techniques as well. A
popular alternative in the RFPT literature is to use the integrating tracking controller
[C3]

v =

(
Λ +

d

dt

)q+1 ∫ t

0
e(τ)dτ = 0 (3.39)

with the error term e(t) = y − yref where yref is the reference to be tracked and Λ > 0
is a control parameter, which must be chosen such that the Laplace transform of the time
derivative of the error dynamics (3.39) is Hurwitz [R45]. Also, during online iteration when
the iteration is close to the fixed point, one can just pass through the previous value to the
next one, i.e., if ||g+ − g|| < δ then g+ = g (where δ is a sufficiently small number).

There are also a number of limitations associated with the presented framework. I
have omitted the derivation of the MIMO case, since the tumor models presented here
only have a single input and a single output. Nevertheless, the literature contains MIMO
deform functions as well, which were successfully applied in previous works [R46], [Cx1].
For systems with stable zero dynamics, the method can be applied without additional mod-
ifications. Nevertheless, in the opposite case, when there are unobservable and unstable
modes of the normal form, the method might have to be modified, which should be the focus
of later research.
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Table 3.1: Identified parameters for the model with 3 states [R37].

s a b c ED50 KB n w x1(0)

S0,1 0.33 0.12 0.24 8.89 · 10−5 0.37 0.12 0.35 0.01
S0,2 0.31 0.17 0.3 9.03 · 10−5 0.36 0.15 0.34 6.11
S0,3 0.31 0.2 0.3 1.04 · 10−4 0.34 0.15 0.33 147.58
S0,4 0.31 0.18 0.27 1.33 · 10−4 0.23 0.17 0.34 51.47
S0,5 0.29 0.16 0.31 8.64 · 10−5 0.36 0.13 0.34 3.87
S0,6 0.3 0.18 0.37 7.91 · 10−5 0.37 0.16 0.34 50.75
S0,8 0.31 0.17 0.19 7.79 · 10−5 0.52 0.13 0.34 11.02
S0,9 0.31 0.17 0.16 8.94 · 10−5 0.4 0.14 0.34 2.69

Another restriction of the method is that the curse of dimensionality affects the con-
troller design. For systems with large state vectors, the algebraic computation of the in-
verse model might be intractable. Furthermore, even if the inversion can be performed,
it still might be numerically ill-conditioned, leading to poor performance in a closed-loop
scenario.

3.6 In silico validation of the RFPT method

Each proposed approach was tested using the tumor growth model with three states, de-
scribed in (2.2), without impulsive action. At the time of the simulations, eight sets of pa-
rameters were identified in [R37] from ten time-series in [R25], shown in Table 3.1. Each
subject is denoted by Si,j , where i is the experiment index (here i = 0, which is consistent
with the indexing in Chapter 5.), and j is the identifier for each time-series in the given
experiment (here j ∈ {1, . . . , 9} for i = 0).

Computation of the coordinate transform (3.6), its inverse transformation, and the
terms in the inverse model (3.8) was carried out using Wolfram Mathematica [C1]. In
the continuous case, the coordinate transform was computed to be

ξ1 = x1 + x2

ξ2 = (a− n)x1 + nx1 − wx2

ξ3 = a

(
(a− n)x1 −

bx1x3
ED50 + x3

)
− w

(
nx1 − wx2 +

bx1x3
ED50 + x3

)
,

(3.40)

with the inverse transformation

x1 =
wξ1 + ξ2
a+ w

x2 =
aξ1 − ξ2
a+ w

x3 = − ED50(wξ2 − a(wξ1 + ξ2) + n(wξ1 + ξ2) + ξ3)

nwξ1 + nξ2 + wξ2 − a(wξ1 + ξ2) + b(wξ1 + ξ2) + ξ3
.

(3.41)

The remaining terms α(ξ) and β(ξ) are

α(x) = x1

(
a− n− bx3

ED50 + x3

)(
a2 − an− nw − b(a+ w)x3

ED50 + x3

)
− w2

(
nx1 − wx2 +

bx1x3
ED50 + x3

)
− bED50(a+ w)x1x3(c(ED50 + x3))

(ED50 + x3)3(Kb + x3)

β(x) = −bED50(a+ w)x1
(ED50 + x3)2

,

(3.42)
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where they are represented in the original coordinates x = T -1(ζ). The corresponding
linear controller was

v = kfy
ref −Kξ (3.43)

kf = − 1

C(A−BK)-1B
, (3.44)

where K is the gain, which was determined using pole placement, where the poles are
introduced later, since their values differ with each variant. The matrices in (3.44) were
computed to be

A =

0 1 0
0 0 1
0 0 0

 , B =
(
0 0 1

)ᵀ
, C =

(
1 0 0

)
. (3.45)

The closed-loop poles pcl = [−0.01,−0.02,−0.03] were chosen so that the response of the
system is a damped curve with no overshoot when uncertainties are not present. Since the
original system is bound to be strictly positive, it is required, that the controller should
produce an input signal which has no zero crossings and is positive for all times. The
previous choice pcl ensures such a response. Furthermore, the reference trajectory was
chosen to be yref = 1.

The deform function used in the simulations was chosen to be (3.38). The initial condi-
tion for the fixed-point iteration was computed as g0 = v for the IO linearized system with
no parameter discrepancy. The three control parameters were tuned also assuming no pa-
rameter mismatch in the model, from which Bc = −1, Kc = 100 and Ac = 0.001 (shown
in (3.38)) resulted in qualitatively the same output signal which is produced by the linear
controller. The number of fixed point iterations was chosen to be Mg = 100.

The robustness of the algorithms was tested by averaging the model parameters, asso-
ciated with controllable tumors in Table 3.1, which then were applied to the inverse model.
The controllable tumors mean parameters sets, where the tumor volume can be arbitrarily
controlled through the input variable. Here the controllable tumors were S0,1, S0,2, S0,3,
S0,4, S0,5, S0,6. The average model parameters were then pavg = [0.302, 0.178, 6.1·10-7, 0.31,
9.86 · 10-5, 0.33, 0.15, 0.33]. The motivation behind this choice is that in a fixed-effect esti-
mation (presented in Chapter 4.1.), a population average is computed, which can be used
as an estimate of the true model parameters of the subject in the inverse model.

For the purely continuous case, the ode45 solver was used to compute g0 with default
settings. Results on the purely continuous RFPT method were then obtained by simulating
(3.20) using the ode15s stiff solver since the parameter discrepancies resulted in stiff ODE-
s, for which ode45 was not able to provide a solution.

Simulation for the different virtual patients for the experimental setup lead to satisfy-
ing results in general. The controller could provide setpoint tracking in the cases, where
no drug resistance was present, where the only exception was S0,4. In this case, the solver
encountered a singularity, thus the solution was not available for these control parameters.
The problem could be solved by increasing the value of Ac to Ac = 0.009, which lead to a
satisfying solution. Nevertheless, in all cases, the produced input signal was positive for all
time and tracking was achieved. An example result with the parameters S0,2 can be seen
in Figure 3.1, where the evolution of state variables, and the control variable g is shown in
the first and last iterations.

The online iterations were also tested on the same parameter set, for which the corre-
sponding algorithm is presented in Algorithm 1. The model was discretized using ∆t =
0.0001, while the other control parameters remained the same. Results were the same in
this setting as well, including the solution issues in S0,4. In this case, however, no param-
eter change resulted in valid solutions. This can be attributed to the Euler integration



32 3. Robust Fixed-Point Transformations

0 200 400 600 800 1,000 1,200 1,400
0

10

20

30

40

Time [day]

St
at

es

x1
x2
x3

0 200 400 600 800 1,000 1,200 1,400
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time [day]

D
ef

or
m

ed
va

lu
e

g0
gM

Figure 3.1: Example result for parameters, corresponding to specimen S0,2 in the case of the
purely continuous variant of the RFPT method. The first diagram shows the evolution of
the three state variable. The second plot shows the corresponding deform function, where
one can see that the original IO linearized control signal g0 = v is altered, resulting in gM .
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scheme used in this variant, which resulted in a singularity at time t = 18.42. The is-
sue could not be resolved even varying the step size. Nonetheless, in the other cases, the
controller produced the positive inputs, and the original IO linearized trajectories were
recovered by the deform function. An example solution can be seen in Figure 3.2, for the
subject S0,2.

Algorithm 1: Real-time RFPT
1 Control parameters: Ac = 0.009, Bc = −1,Kc = 100, pcl = [−0.01,−0.02,−0.03], kf

(3.43), yref = 1, ∆t = 0.0001
2 System parameters: A,B,C (3.45), x0 = [x1(0), 0, 0]
3 pavg = [0.302, 0.178, 6.1 · 10-7, 0.31, 9.86 · 10-5, 0.33, 0.15, 0.33]
4 Compute ξ0 assuming pavg: ξ0 = Tc(x0) (3.40)
5 Calculate g := g0 = kfy

ref −Kξ0
6 while Control is active do
7 Measure ξ and ξ̇r
8 v = kfy

ref −Kξ

9 g+ = (g +Kg)(1 +Bgtanh(Ag(ξ̇3 − v)))−Kg (3.38)
10 if |g+ − g| < δ then
11 g+ = g

12 u = g−α∗(ξ)
β∗(ξ) , using pavg as the model parameters (3.42)

13 Apply the control signal u and let g := g+

The last variant was the purely discrete algorithm [C1], for which the corresponding
algorithm is presented in Algorithm 2. In discrete-time, the coordinate transform is given
as

ζ1 = x1 + x2

ζ2 = x1 + a∆tx1 + x2 −∆twx2

ζ3 =
1

ED50 + x3
(ED50((1 + a2∆t2 + a∆t(2−∆tn)−∆t2nw)x1

+ (−1 + ∆tw)2x2) + ((1 + a2∆t2 − a∆t(−2 + b∆t+∆tn)

− b∆t2w −∆t2nw)x1 + (−1 + ∆tw)2x2)x3),

(3.46)

with the corresponding inverse transformation

x1 =
(−1 + ∆tw)ζ1 + ζ2

∆t(a+ w)

x2 =
ζ1 + a∆tζ1 − ζ2

∆t(a+ w)

x3 = − ED50((1 + a∆t−∆tn)(−1 + ∆tw)ζ1 + (2 + a∆t−∆t(n+ w))ζ2 − ζ3)

(1 + a∆t− b∆t−∆tn)(−1 + ∆tw)ζ1 + (2 + a∆t− b∆t−∆tn−∆tw)ζ2 − ζ3
.

(3.47)

The remaining terms, hr(x, u) (A.1) and Ψ(x, v) (A.2) can be found in the appendix due to
formatting considerations.

Here, a different discretization constant ∆t = 1 was used. Note that this value is
significantly larger than in the case of the online iteration scheme. This is due to the
reason, that the inverse transformations are numerically unstable, when ∆t → 0. For
discrete-time linear systems, the stable poles lie in the unit disk around the origin. To this
end, the closed-loop poles were chosen to be pcl = [0.9, 0.8, 0.7], which results in a damped
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Figure 3.2: Example result for parameters, corresponding to specimen S0,2 in the case of
the online iteration. This first plot shows the evolution of the tumor volume, and the second
plot contains the corresponding input signal.
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behavior for tracking, while the parameters of the deform function remained unchanged.
The correction term for the linear controller was also modified to

kf = − 1

C(I −A−BK)-1B
, (3.48)

where I ∈ R3×3 is the identity matrix [R47]. Simulating the system with the same config-
uration, i.e., using average model parameters in the inverse model, lead to unsatisfactory
results in this case. The controller, could only provide satisfactory results for S0,2, S0,5 and
S0,6, while in the other instances the numerical errors lead to unstable trajectories. In
Figure 3.3. the result of the discrete-time RFPT controller is shown for S0,2. Note that
the input in this case is not strictly positive, hence this solution is not valid for the tumor
growth model.

Algorithm 2: Discrete time RFPT
1 Control parameters: Ac = 0.009, Bc = −1,Kc = 100, pcl = [0.9, 0.8, 0.7], kf (3.43),

yref = 1, ∆t = 1
2 System parameters: A,B,C (3.45), x0 = [x1(0), 0, 0]
3 pavg = [0.302, 0.178, 6.1 · 10-7, 0.31, 9.86 · 10-5, 0.33, 0.15, 0.33]
4 Compute ζ0 assuming pavg: ζ0 = Td(x0) (3.46)
5 Calculate g := g0 = kfy

ref −Kζ0
6 while Control is active do
7 Measure ζ and ζ+r
8 v = kfy

ref −Kζ
9 g+ = (g +Kg)(1 +Bgtanh(Ag(ζ

+
3 − v)))−Kg

10 if |g+ − g| < δ then
11 g+ = g

12 u = Ψ(T -1
d (ζ), g), using pavg as the model parameters (A.2)

13 Apply the control signal u and let g := g+

The RFPT method performed well in the continuous cases, and lead to robust setpoint
tracking in the majority of parameter configurations. However, the discrete-time vari-
ant did not prove to be useful in this case due to the inherent structural conditioning of
the transformation rules. Additionally, each solution assumes continuous administration
which is currently infeasible.

In the following, a different approach using Model Predictive Control and Moving Hori-
zon Estimation is presented which permits the use of impulsive action that models the
administration realistically, and can provide the same robust behavior as the RFPT con-
troller.
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Figure 3.3: Example result for parameters, corresponding to specimen S0,2 in the case of
the discrete variant. This first plot shows the evolution of the tumor volume, and the
second plot contains the corresponding input signal.
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Chemotherapy optimization

Thesis Group 2: Chemotherapy optimization using NMPC and MHE

Thesis 2
I designed an impulsive NMPC to compute individualized
chemotherapy protocols for mice. The controller was augmented
with an MHE and the combined robustness of the method was
tested in silico using a virtual population that was generated from
previous mice experiments.

Publications relevant to the theses: [C8, C7, C5, C6].

Thesis 2.1
I implemented an impulsive NMPC using Direct Multiple Shoot-
ing with Dirac delta approximations in the input action. The re-
sults were demonstrated in silico, assuming full state observabil-
ity and no uncertainties. The simulations showed that the algo-
rithm is capable of providing an optimal administration sequence
for the tumor growth model.

The results can be seen in Subsection 4.2.5. and 4.2.10.

Thesis 2.2
I developed a purely impulsive NMPC that uses an impulsive dif-
ferential equation as the prediction model. I also developed a vir-
tual population that was used for the tuning and testing of the
proposed algorithm. Furthermore, I showed that numerical er-
rors in the optimization problem can be avoided by introducing
transformations on the state variables and the cost function. Nu-
merical results showed that the numerical stability of the pro-
posed scheme is superior to the DMS based implementation.

The results can be seen in Section 4.2.

37
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Thesis 2.3
I have developed a Moving Horizon Estimator that is able to si-
multaneously estimate the states and the parameters of the un-
derlying tumor growth model. I also presented the tuning process
of the estimator. In silico results on previous experimental data
indicated that the algorithm is effective in solving the estimation
task.

The results can be seen in Section 4.1.

In the following section a full description of the control method applied in the experi-
ments is given. First, the parameter estimation of the model is discussed, followed by the
description of the state estimation algorithm, provided by the MHE. This is then followed
by the description of the NMPC, where several implementations were examined.

4.1 State and parameter Estimation

In Chapter 2., I introduced two tumor growth models, which can be used to design model-
based therapies. In particular, the model of choice contains only three or four state vari-
ables that describe the dynamics of tumor growth in conjunction with the pharmacokinet-
ics and pharmacodynamics of the therapeutic regime. While the simplicity of the model
is attractive from the perspective of control design, some modification is essential to en-
sure proper predictive capabilities. In this chapter, I investigate the problem of parameter
estimation of the four state model from time-series data and provide modifications that
can alleviate technical difficulties of the procedure through the use of the Full Information
Estimator (FIE) and the Moving Horizon Estimation (MHE).

4.1.1 Parameter identifiability

Whenever a parameter identification task is present, an identifiability analysis should be
conducted before to determine which parameters can be identified. Such an analysis was
performed for the model with three state variables in [R48]. The paper used the GenSSI
Matlab toolbox [R49] to perform the identifiability analysis, and the AMIGO 2 Matlab tool-
box [R50] for sensitivity analysis. The paper showed that for a particular initial condition
and input sequence, the parameters a, b, n, and w were the most sensitive, and they all
can be structurally locally identified (s.l.i.). This analysis formed a basis for the design of
an MHE in the first two experimental validations, described in [R51]. In these two cases,
only the parameters a, b, n, and w were identified during the experiments using the MHE,
and the rest were assumed to be constant. Despite conducting a prior extensive in silico
validation before the in vivo experiments, the MHE in both cases led to significant vari-
ations in the estimated parameters. The variation is caused by the s.l.i. property of the
parameters, which means that an identification problem (least squares fit on the measured
tumor volume data) could have multiple solutions. This implies that even if two consecu-
tive measurements are close to each other, the corresponding identified parameters might
have drastically different values, leading to poor performance in control (as can be seen in
Chapter 5).

In order to overcome this issue, the goal was to redesign the MHE such that these jumps
can not occur. Moreover, I also intended to estimate all model parameters simultaneously,
not just the most sensitive ones. The reason to do this was the role of ED50 and c in the
optimization, where the optimized doses highly depend on the value of these two variables.
Additionally, I also anticipated that one of the time-varying identified model parameters
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should correlate with the tumor volume, lending to some qualitative metric on the level of
drug resistance in the mice.

To perform the identifiability analysis, I also used the GenSSI Matlab toolbox. GenSSI
uses a generating series of Lie derivatives to determine the identifiability of the nonlinear
system [R52]. The algorithm only requires the model and an initial condition to determine
the identifiability properties of each parameter. The initial condition was determined to
be x0 = [200, 0.1, 8, 0]. This choice is based on the in vivo experimental setup, where an
identification dose of 8 [mg/kg] is given to a mouse when the tumor exceeds 200 [mm3].
For the model with four state variables, the algorithm showed that the model parameters
a, b, n, w,ED50, c, k1, and k2 are all s.l.i. Nevertheless, there are a few considerations that
must be taken into account regarding the practical identifiability of the model.

For example, when a mouse receives conventional treatment (described in Section 5),
a constant 8 [mg/kg] drug is given at every administration instance. Since there is no
variation in the input space in this case, there is no hope that ED50 can be adequately
identified. This issue was present after the baseline experiment (S0), described in Section
5.1, where the ED50 was computed to be in the region 10−4 − 10−5, meaning that even tiny
amount of drug leads to remission, which was not the case in practice.

Additional issues emerge in the case of the identifiability of the model as well. If the
input is chosen to be purely impulsive, the analysis becomes unreliable since the vast
majority of the existing methods assume the vector field of the model to be continuously
differentiable. A few exceptions in the literature work on simple problems, but a reliable
solution is still in progress [R53, R54].

4.1.2 Mixed-Effect models

The Stochastic Approximation of Expectation Maximization (SAEM) algorithm [R55] was
used to identify the parameters of the model in a mixed-effect manner, as indicated in
[R36]. Mixed-effect parameters are suitable in cases where repeated measurements are
taken on the same process, with some parameter variability between each measurement.
In this work, multiple time series are considered on tumor growth, originating from mice
experiments, with slight parametric differences between each experiment due to biological
variability. Mixed effect parameters consist of two parts, namely the fixed effects, which
describe the population average, and the random effects that pertain to each individual
sample [R56]. Formally, for systems described with differential equations, one writes

ysk = h(xs(tk,ps)) + εsk (4.1)

where ysk is the kth observed value of time series s, xs ∈ Rn denotes the states of the
corresponding system of subject s, dependent on the model parameters ps ∈ Rp, h : Rn → R
is the output equation of a nonlinear system, and εsk is a noise term, often characterized
by a Gaussian distribution. Furthermore, the parameter has mixed effects, as

ps = θ + δs, δs ∼ N (0, Σ) (4.2)

where θ describes the fixed effects, while δs is the corresponding random effect for time-
series s, drawn from a normal distribution with covariance matrix Σ. The objective is then
to find both θ and Σ, which is performed through maximum likelihood (ML) estimation.
The procedure which computes the ML estimation is called the Expectation-Maximization
(EM) algorithm, which is an iterative algorithm and has different implementations, from
which SAEM is preferred due to its numerical efficiency.

One issue that must be addressed with each iterative algorithm is the proper selec-
tion of an initial condition, which has a major impact on the final estimated parameters.
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Results in [R36] indicate, that the same issue is present in the identification of the pa-
rameters in the tumor growth models. Moreover, it is not possible to include box, or any
other sophisticated constraints in the SAEM algorithm, which could lead to physiologically
unreasonable state trajectories. In the following sections, I detail a possible remedy to this
issue.

4.1.3 Full Information Estimator

Instead of using mixed-effect models, one can utilize nonlinear least-squares (NLS) regres-
sion methods to estimate the parameters of the model [C8]. The drawback of such an
approach is that it does not account for any inter-patient variability in the model, which
consideration can be beneficial for virtual population generation, as will be shown in Chap-
ter . Nevertheless, it can help to find proper initial conditions for the SAEM method, by
computing the estimates for each time-series independently from the same initial condi-
tion, and then taking the average of the results. In the case of NLS, one only considers
fixed parameter vectors and no measurement errors as

ysk = h(xs(tk,ps)) (4.3)

and formulate a least squares minimization problem for a fixed time series s

J(p∗
s) := min

ps

M∑
k=0

||ysk − ŷsk(ps)||2 (4.4)

where ŷsk(ps) is the simulated output of the system for parameters ps at time tk. Finding
the optimal parameter vector ps is, again, performed by an iterative algorithm, which
entails the same problem that is present in the case of the SAEM. In order to circumvent
this issue, my approach was that instead of taking each measurement simultaneously,
M − 1 number of NLS problems are solved sequentially by considering only the first k
sample for the kth NLS optimization. In its essence, this procedure is the same as the
FIE algorithm, described in [R23]. Since this approach entails a significant computational
complexity, MHE is often used as a substitute in the literature [R57, R58]. Nonetheless, in
the case of biological systems, limitations on the frequency of the measurements permits
the use of this approach in a time-sensible manner.

The parameter vector for the kth optimization is denoted by pk. In the case of the
FIE, one can also augment the parameter vector with the initial condition of the system
as pk = [pk,x(t0)]

ᵀ ∈ Rp+n (with a slight abuse of notation), which will also be the subject
of optimization. Two data vectors are defined which contain the measurements of the
process and the inputs of the system, in the same manner as in Chapter . The time of
measurements are again given as t0 < t1 < · · · < tk < · · · < tM with the associated data
vector yM = [y(t0), y(t1), . . . y(tk) . . . y(tM )]. The inputs of the system do not necessarily
coincide with the measurements, hence it is defined on τ0 < τ1 < · · · < τi < · · · < τN
with its values contained in the vector uN = [u(τ0), u(τ1), . . . u(τi), . . . u(τN )]. Note that
τN < tM , since inputs given after the last measurement has no effect on the regression.
One can then use these data vectors to define the estimator cost as

Jk(pk;pk−1,yk,uk) =
1

k
∆y>

k ∆yk +
1

p+ n
∆p>

k R∆pk, (4.5)

where yk and uk are the truncated versions of the full data vectors, which contain all the
measurement and administration data up to the time instance tk, respectively. The error
term ∆yk denotes the normalized error between the measured and simulated tumor vol-
umes up to time tk, i.e. ∆yk = (yk − ŷk)/ȳ. Here, ŷk contains the simulated tumor volumes
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at each measurement time instant in a vector, and ȳ is a normalization constant. The sim-
ulated tumor volumes originate from the solution of the underlying differential equation
model, which is computed in the interval [t0, tk] with initial condition x(t0), input sequence
uk and model parameters pk. The second error term ∆pk penalizes the parametric devia-
tion between each consecutive estimation problem, which is ∆pk = (pk−pk−1)�ps. Here, �
denotes the element-wise division between two vectors and ps contains scaling constants.
The weight matrix R = diag(pc) is a diagonal matrix with positive entries, contained in the
vector pc, that controls the smoothness between each calculated parameter values, i.e., pk

and pk−1. The optimization problems with indices k ∈ {1, . . . ,M} are defined as

Jk(p
∗
k) := min

pk ∈ Rp+n
Jk(pk;p

∗
k−1,yk,uk)

s.t. x ∈ X,
pk ∈ P

(4.6)

where the sets X and P constraint the states and parameters of the system in a biologically
meaningful feasible set. In particular, X constraints the states to be positive, while the
constraints imposed on P can be found in Table 4.1. The solution of the kth optimization
is denoted by Jk(p

∗
k), where the argument is the optimal parameter vector. Since the opti-

mizations are recursively defined, one needs an initial parameter vector p0 which can be
used to initialize the sequential estimation.

When the last optimization JM (pM ) is solved, the FIE produces an estimate of the
model parameters p∗

M , which describes the time-series through the simulation of the un-
derlying model. Since in each consecutive step, the deviance between the model parameters
is also penalized, the procedure in which the solution is obtained has better convergence
properties in practice compared to regression on the whole time series simultaneously. A
loose argument behind this effect is that in simultaneous estimation, the problem space is
highly nonlinear due to the consideration of every available measurement. By sequentially
performing the NLS on each consecutive datapoint, the subproblems are easier to solve,
from which the resulting p∗

k is a close approximation of the next problem p∗
k+1. As a con-

sequence, the introduction of additional cost and constraints on the parameters between
each solution results in robust convergence of the method.

4.1.4 Moving Horizon Estimation

Since the structural complexity of the model considered in this work is relatively low com-
pared to microscopic models, the use of time-varying parameters can enhance its predictive
capabilities. Contrary to the principles of FIE, the MHE only considers a fixed number of
past measurements, thus alleviating the computational burden of the scheme. Further-
more, the estimation of the initial tumor volumes is omitted, such that the last two ele-
ments of pk is no longer subject of the optimization because of the moving horizon.

Here, the number of previous measurements considered at each step will be denoted
by W . At each measurement time instance tk, two data vectors yW

k and uW
k are de-

fined. The vector yW
k contains the previous W number of measurements, i.e., yW

k =
[y(tk−W ), y(tk−W+1), . . . , y(tk)], while the corresponding input sequence vector uW

k con-
tains the applied inputs u(τi), τi ∈ [tk−W , tj ] in between the endpoints of the window. Using
the fixed length data vector yW

k in (4.5), the cost function has the form

JW
k (pk;pk−1,y

W
k ,uW

k ) =
1

W
∆y>

k ∆yk +
1

p
∆p>

k R∆pk. (4.7)

Here, the definition of ∆pk remains the same, but the error term ∆yk is slightly modi-
fied. Since a moving horizon is used, simulating the tumor volumes ŷk requires modified
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Figure 4.1: Schematic depiction of the estimation process. The black line denotes the true
evolution of the tumor, and the black dots represent the measurements on the process. The
turquoise line indicates the estimated tumor volume evolution, and the dots represent the
estimated measurements at each measurement time instance. The green arrows indicate
the dosages, which are not necessarily administered on the same days as the measurement
time instances.

input data to the ODE solver. When k ≤ W (there are fewer measurements than the
length of the window), the initial condition x(t0,pk) is used to simulate the system on the
interval [t0, tk]. When k > W (the window start moving), the initial condition is set to
be x(tk−W ,pk) = x(tk−W ,p∗

k−1). Using this cost definition, each successive optimization
problem can be defined similarly to (4.8) as

JW
k (p∗

k) := min
pk ∈ Rp

JW
k (pk;p

∗
k−1,y

W
k ,uW

k )

s.t. x ∈ X,
pk ∈ P

(4.8)

A visual depiction of both algorithms can be seen in Figure 4.1. Tuning the parameters of
the algorithm, namely the horizon length and the scaling terms, is problem specific and has
no general solution. In the following section, I present an approach to tailor the algorithm
to the tumor regulation problem and also determine both W and R using the available
experimental time series.

4.1.5 Parameter tuning

The parameter tuning of the MHE consists of two steps [C8]. First, the feasible sets X and
P are determined through appropriate state and parameter constraints. The second step
is the computation of the estimator parameters W and R using the FIE. Each time new
experiments are conducted, the tuning process can be repeated which eventually yields
increased accuracy in the estimation. Therefore, I assume, that N different experimental
time-series data is available, where each day, the amount of drug that is given to the mice
is recorded, in conjunction with the measured tumor volume values (computed using (2.1)).
For each time-series, the vectors uNs ,yMs represents the input and output data for subject
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Table 4.1: Numerical values of the parameters present in both the FIE and the MHE

p p0 p∗
0 p p̄ pc

a 1 0.99 10−2 10 10−2

b 1 1.51 10−2 10 10−2

n 1 0.68 10−2 10 10−2

w 1 0.12 10−2 10 10−2

ED50 1 0.77 10−2 10 10−2

c 1 0.13 10−1 1.5 10−2

k1 1 4.32 10−2 10 10−2

k2 1 2.76 10−2 10 10−2

x1(t0) y0/2 - 0.5 ȳ 10−2

x2(t0) y0/2 - 0.5 ȳ 10−2

s. In the first iteration of the parameter tuning, 51 experimental time-series data were
available, from which s ∈ {1, . . . , 51} (corresponding to the baseline, and first experiments
S0 and S1, which will be introduced in Chapter 5.). The model used in this section was the
tumor growth model with four states, which was introduced in (2.3).

The first step is to identify proper bounds on the states based on the time series. Due to
ethical considerations, mice are sacrificed if the tumor volume exceeds a particular value,
after which it is considered animal cruelty [R25]. Hence, each experimental time series
contains values less than 5000 [mm3], so it is a suitable choice for the upper bound ȳ, and
the lower bound was chosen to be y = 1 [mm3]. The reason behind this choice is that PLD
does not entirely eliminate the tumor in the subject, but it is capable of reducing it to such
a small extent that the measurement error of the calipers exceeds the true value of the
tumor, rendering the obtained values unusable.

The second step is to obtain the upper and lower bounds p̄, and p on the parameters
of the optimization. For the FIE, no prior knowledge is assumed on the parameter values,
hence they are set to be uniformly bounded in the region [0.01, 10], which can be seen in
Table 4.1, except for the drug clearance parameter. The constraints on c were chosen to be
tighter, because values outside these bounds result in immediate, or essentially no deple-
tion of the drug. The initial condition p∗

0 of the optimization sequence was selected to be one
for all of the model parameters, indicated in Table 4.1. For the initial conditions of the sim-
ulation, the initial measured tumor volume was equally divided between x1(t0) and x2(t0).
If the first measurement is zero, the optimization is initialized with x1(t0) = x2(t0) = y.
This initial condition vector was also used for the parameter scaling vector as ps = p0.

The last parameters of the FIE that must be found are the weighting terms pc in the
weight matrix R. Since this matrix controls the trade-off between the accuracy of the esti-
mation and the smoothness of the resulting time-varying parameters, it is essential to find
the value that balances these two terms. As aforementioned, by penalizing the distance
between each consecutive solution p∗

k the convergence of the optimization drastically im-
proves. If one omits this term, the algorithm is not capable of finding an accurate solution
to the optimization problem, only if the box constraints are removed, which in turn results
in negative parameter values that are physiologically infeasible.

Due to the nonlinear nature of the model, there is no analytic way of determining the
optimal estimator parameters that balance the accuracy and parameter deviation, hence
requires extensive computational effort to compute their values. As a consequence, a grid
search strategy was used by fixing a number of values for pl

c (second row of Table 4.2.) and
defining R = diag(1plc), where 1 ∈ R10 is a vector with all of its entries being equal to one.

During the search, the ode45 routine of MATLAB was employed to simulate the model
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Figure 4.2: Diagram between the overall RMSE and smoothness scores associated with
each weight parameter.

(2.3), where the NonNegative option was set to be true. This is an important attribute
because, for some combination of the parameters, the numerical errors result in negative
state values which in turn leads to failure in the optimization. For the optimization, the
fmincon routine was used to solve problem (4.8). In particular, the SQP solver was chosen,
where the MaxFunctionEvaluations parameter was changed to 15000 and the FiniteDiffer-
enceType parameter was set to central in order to improve convergence.

At the end of the optimization, two different scores were introduced to measure the
accuracy and the smoothness of the solutions, corresponding to each subject for each pl

c.
For a fixed time series s, the accuracy was determined using the normalized Root Mean
Square Error (RMSE), which is computed using

RMSEs =

√
1

Ms
∆yᵀ

Ms
∆yMs . (4.9)

Again for a fixed s, the matrix P ∗
Ms

= (p∗
0, p

∗
1, . . . ,p

∗
Ms

) is defined, which contains the time-
varying parameters computed at each measurement time instance. The lag one sample
autocorrelation function was used to determine the smoothness of the parameters, asso-
ciated with P ∗

Ms
, which is denoted by p̃∗

a, using the autocorr function of MATLAB with
default settings. Values closer to one indicate smooth behavior, while values near zero im-
ply sudden changes between the estimations. Because this score has an opposite direction,
compared to the RMSE (the higher the score the better the result), the value was trans-
formed as p̃∗ = −p̃∗

a + 1. Finally, an overall score is obtained on the smoothness of the
parameters by taking the average on the elements of p̃∗ for the time series s.

By computing these scores for each time series, one can average them to obtain a single
score for each possible weight pl

c. Table 4.2 contains the computed scores associated with
weights pl

c. Based on the values, one can see that both scores stay relatively constant after
10−2. In addition to that, using smaller weights often results in futile iterations during
the estimation, which is the reason why the RMSE of the fourth instance is lower than the
fifth, as can be seen in Figure 4.2. Considering these observations, the value pc = 10−2 · 1
was chosen, which can also be seen in Table 4.1.

After the search, 51 constant model parameter instances were obtained, each denoted
by p∗

s. In Figure 4.3., the box plot of the obtained model parameters is shown to visual-
ize their distributions [C8]. In order to improve the initial estimation, the mean of each
parameter was taken and used as an initial estimate in the SAEM algorithm. Because
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Table 4.2: Smoothness and RMSE scores of different tuning parameters

l 1 2 3 4 5

plc 100 10−1 10−2 10−3 10−4

RMSE 0.12 0.07 0.04 0.035 0.036
Smoothness 0.44 0.52 0.59 0.61 0.6
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Figure 4.3: Box plot of the obtained parameters on the 51 time series. The visualization of
x1(t0) and x2(t0) was excluded since they will vary significantly due to the various initial
measurements contained in the time series. On each box, the central red line indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the red + marker.

SAEM is a stochastic algorithm, 100 instances of the algorithm were executed, each one
initialized from the same mean parameter vector. The computation was carried out by us-
ing nlmefitsa routine of MATLAB with log transformation on the parameters to constrain
them to be positive. Since SAEM does not allow box constraints to be imposed during the
identification, those results were filtered where the parameters exceed the region [p, p̄].
The remaining instances then were ordered based on their RMSE scores, from which the
lowest instance was chosen, denoted by p∗

0. This value is then used in the MHE as an
initial guess for the parameter vector. Because MHE does not estimate the initial states of
the model, these values are omitted from Table 4.1.

In order to find a proper value for W , a different approach was taken. Based on bi-
ological considerations, the cell homogeneity of the tumor is altered in the presence of a
chemotherapeutic agent. In a simplified model, each cell can die, survive or adapt to the
molecular configuration of the given drug, leading to mutations in the tumor [R26]. Each
successive treatment then entails some form of mutation which eventually leads to drug
resistance. Therefore, I assumed that the parameter change of the tumor happens during
the clearance of a single dose of 8 [mg/kg], which, according to [R25], is around 5 to 7 days.
Based on this consideration, the window length of the MHE was chosen to be W = 6.
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4.2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is an optimal control methodology that has
become one of the most popular nonlinear control strategies due to its flexibility [R59]. In
classical optimal control, one seeks to solve an infinite-dimensional optimization problem
on a finite interval by minimizing a given cost function, subject to the system’s dynamics.
Since many systems are nonlinear, the optimization problem can not be solved analytically
and requires numerical ODE solvers in conjunction with nonlinear optimizers. The result-
ing optimal control signal is then applied to this finite interval of the system in an open-
loop manner. NMPC is based on the same principles, except the optimization is performed
each time a new measurement is available. This also entails that the solution interval
is also advancing temporally, thus resulting in a closed-loop control scheme. Solving the
optimal control problem multiple times in succession requires extensive computational ca-
pacities, but with the current advancements in technology and algorithmic design, NMPC
has gained widespread use among control engineers in both industry and academy [R60,
R61, R62].

In the current chapter, I describe the theoretical background of the NMPC, based on
the works of [R24]. While most of the literature introduces NMPC using discrete time pro-
cesses [R63, R59], the following exposition focuses on implementing continuous systems.
First, the general optimal control formulation is presented, followed by the different dis-
cretization approaches that can be utilized to approximate the infinite-dimensional prob-
lem. The implementation of the controller to the tumor regulation problem will also be
presented, with the tuning of the control parameters and in silico investigations on the
method’s performance.

4.2.1 Optimal Control

In optimal control, the problem is often defined as minimizing some functional on a finite
interval that is parametrized by the control input of the system. In technical terms, the
optimal control problem (OCP) is given by

JT (x
∗(t), u∗(t)) = min

u(t)

∫ T

0
L(x(t), u(t))dt+ E(x(T ))

s.t. x(0)− x0 = 0,

ẋ(t)− f(x(t), u(t)) = 0,

g(x(t), u(t)) ≥ 0,

r(x(T )) = 0

(4.10)

where u(t) ∈ R is a scalar input signal at time t, and x(t) ∈ Rn is the state of the system
at time t. Furthermore, L(x(t), u(t)) is called the stage cost, while E(x(T )) is the terminal
cost, with T being the terminal time. The first two constraints specify the dynamics of the
system with its initial condition x0, g denotes the vector of possible path constraints that
the solution must obey (physically reasonable states, or actuator limitations), while the
last set of constraints r is the so-called terminal constraints which can be used to stabilize
the system.

The solution of the problem JT (x
∗(t), u∗(t)) is most often intractable analytically, with

the exception of unconstrained linear systems with linear cost, called LQR control. There-
fore, the OCP must be discretized on a finite grid of points to solve it numerically. There
are three different numerical approaches, which are called direct single shooting (DSS),
collocation, and direct multiple shooting (DMS). In this exposition, only DSS and DMS are
introduced, which formed the basis of the implemented controllers.
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4.2.2 Direct Single Shooting

In the first scenario, only the controls are discretized on a finite grid. Since the goal is
the finite parametrization of the infinite problem, one also has to choose the form of the
input signal, which is most often a piecewise constant signal. The discrete points on the
time grid are denoted by 0 = τ0 < τ1 < . . . < τN = T and the corresponding constants are
d = [d0, d1, . . . dN ], whence u(t) := u(t,d) = di, t ∈ [τi, τi+1]. Using these discrete variables,
the IVP

ẋ(t) = f(x(t), u(t,d)), x(0) = x0, t ∈ [0, T ] (4.11)

can be solved using numerical ODE solvers, which results in solution vector, where each
element in the vector xi(τi, di) is located at τi-s. One can also choose a multi-grid approach,
where the solution components are given on a finer grid rather than using τi-s as basis
points. These solution components can be then used to discretize the path and terminal
constraints, which transforms the OCP into

JT (d) = min
d

∫ T

0
L(x(t,d),d)dt+ E(x(T, dN ))

s.t. g(x(τi), di) ≥ 0,

r(x(T )) = 0

(4.12)

where the integral is also approximated (using the trapezoidal rule for example) on the
discrete points corresponding to each solution component xi(τi, di). DSS is the simplest
approximation to the OCP, hence it is often the first choice to implement the optimization.

4.2.3 Direct Multiple Shooting

In the DMS variant, the controls and the states are discretized simultaneously. The dis-
cretization of the controls remains the same, and the dynamics of the system is defined
piecewise as

ẋi(t) = f(xi(t), u(t, di)), xi(t) = si, t ∈ [τi, τi+1], (4.13)

where each si is an artificial initial value that will also be the subject of the optimization.
Each piece then numerically solved that result in the trajectory pieces x(t, si, di). In order
to obtain continuous trajectories on the optimization interval, the continuity constraints
si+1−xi(τi+1, si, di) = 0 are imposed during the optimization. For each trajectory piece, the
associated cost integral

`i(si, di) =

∫ ti+1

ti

L(x(t, si, di), di)dt, (4.14)

is also approximated. Since the optimization is now dependent on two vectors, namely
s := [s0, s1, . . . sN ] and d, one should combine them into a single vector which is compatible
with general nonlinear optimizers as w := [sᵀ0, d0, s

ᵀ
1, d1, . . . , s

ᵀ
N ]. In summary, the OCP is

now formulated as

JN (w∗) = min
w

N−1∑
i=0

`i(si, di) + E(sN , dN )

s.t. s0 − x0 = 0,

si+1 − xi(τi+1, si, di) = 0, i = 0, . . . , N − 1,

g(si, di) ≥ 0, i = 0, . . . , N,

r(sN ) = 0,

(4.15)

where N is the horizon length and T = N(τi+1 − τi). DMS has a number of practical
advantages as opposed to DSS, including faster local convergence and parallelizability of
the ODE solution due to the artificial initial values.



48 4. Chemotherapy optimization

4.2.4 Nonlinear Model Predictive Control

Computing the solution of the OCP (4.10) results in a sequence of optimal control signals
that can be applied to the system in an open-loop manner. A closed-loop control scheme
can be obtained, by measuring the states of the system at each tk, computing the state
estimates at each τi, and solving the problem at these instances. This strategy is called the
NMPC and has found numerous applications in a wide range of systems, aforementioned
in the introduction.

In order to implement the approach online, one has to measure the full-state x of the
system at each control instance. However, this is practically infeasible, due to the lim-
ited number of observables during the experiment. For instance, one can only measure
the complete tumor volume but has no information on the distribution between the living
and necrotic parts. This can be alleviated by using a state estimator, as was presented
previously in Chapter 4.1. in the form of the MHE.

Consider the solution of the problem (4.8) at time tk denoted by p∗
k. For each p∗

k, the
differential equations are simulated in the interval [tk−W , tk] (or from [0, tk] as described
in 4.1.4), resulting in a state estimate x̃(tk) at the end of the simulation interval. If the
measurement and the input time instances do not coincide, and the input time is after a
measurement instance, one can instead simulate the system up to time τi with the same
model parameters, resulting in the estimate x̃(τi). These modifications change the OCP as

JT (x
∗(t), u∗(t), τi) = min

u(t)

∫ τi+T

τi

L(x(t), u(t))dt+ E(x(τi + T ))

s.t. x(τi)− x̃(τi) = 0,

ẋ(t)− f(x(t), u(t)) = 0,

g(x(t), u(t)) ≥ 0,

r(x(t)) = 0.

(4.16)

The problem can be solved by either implementing DSS or DMS, as shown in the previous
sections. The first element of the control signal u(τi) is then applied to the system, and
the procedure repeats at the next control time instance τi+1. Figure 4.4. visualizes the
approach. When the problem is solved numerically, the optimal solution u∗(t) can be passed
as an initial condition to the next optimization instant at time τi+1, which is called the hot-
start of the NMPC. This improves the convergence speed of the algorithm, thus making it
suitable for real-time applications.

4.2.5 First implementation

In the first implementation of the algorithm, the DMS approach was utilized due to the
expected increase in computational speed compared to the DSS [C5]. The initial model in
(4.13) was (2.2), containing three state variables. Moreover, the input was represented as
the Dirac approximation (2.5) where a single element is given as

ui = u(t, τi, di) =


di
2ε

(
1 + cos

(
π(t− ξi)

ε

))
, τi ≤ t ≤ τi + 2ε

0, τi + 2ε < t < τi+1.
(4.17)

The stage cost penalizes the tumor volume and the input rate as

`(si, di) =

∫ τi+1

τi

(
y(si)− yref

y0

)2

+ r
(ui
ū

)2
dt (4.18)

where y(si) is the simulated output of the system on the interval [τi, τi+1], associated with
the artificial initial value si, di is the input dose, and r is a control parameter. Moreover, y0
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Figure 4.4: Visualization of the NMPC. The red and turquoise lines indicating different
predictions concerning different administration protocols during the optimization.

is the measured tumor volume at the beginning of the treatment, yref = 1 is a nonzero ref-
erence tumor volume and ū = 480 is the maximum of (4.17) for di = 8 and ε = (15/86400)/2.
Both scaling terms were introduced to the end of bringing both objectives to the same nu-
merical domain, which can improve the conditioning of the optimization. The optimization
problem at time τi is then defined as

JN (w∗, τi) = min
w

N−1∑
l=0

`(si+l, di+l)

s.t. s0 − x0 = 0,

si+l+1 − xi+l(τi+l+1, si+l, di+l) = 0, l = 0, . . . , N − 1,

di+l ∈ [0, 8] l = 0, . . . , N − 1,

si+l ∈ Rn+ l = 0, . . . , N − 1,

(4.19)

where the notation Rn+ means that each element of the state vector is a positive real
number. The initial condition for w at the first optimization instance contains the terms
si+l = [y0, 0, 0] and di+l = 8. The problem (4.19) was solved using the fmincon rou-
tine of MATLAB with the options Algorithm: sqp, FiniteDifferenceType: central and Max-
FunctionEvaluations: 15000. The integral in (4.18). was approximated using the trapz
trapezoidal integration method [C6].

4.2.6 Second implementation

Adjustments were made in the second version of the controller on the basis of a number
of observations from the first experiment [C7]. The first issue during the experiment was
that in some instances, the controller parameters had to be manually changed in order to
avoid doses that were too large and might lead to cumulative toxicity in the subjects. Also,
for some parameter combinations provided by the MHE, numerical errors emerged which
corrupted the resulting doses. In the second generation of the algorithm, a systematic tun-
ing procedure was then introduced to eliminate the numerical errors, with an additional
constraint on the cumulative toxicity. The DMS implementation was also replaced since
it did not provide the expected computational benefit compared to the DSS. This can be
attributed to the fact, that the underlying differential equations contain only a few state
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variables and are fast to solve using adaptive ODE solvers. By parallelizing the solution,
the computational overhead in the implementation is larger than just solely simulating the
system. The optimization solver was also changed to a derivative-free method for which
improved numerical conditioning was expected. Moreover, the input action was changed to
the purely impulsive variant (4.26), since the original formulation turned out to be more
computationally demanding without fostering the stability of convergence of the optimiza-
tion. These changes lead to the reformulated stage cost

`(yi, di) =

∫ τi+1

τi

(
y(di)− yref

y0

)2

dt+ r

(
di
d̄

)2

, (4.20)

where ` is similarly defined as in (4.18), except the simulated output depends now on the
input sequence only, rather than the artificial initial conditions, which is emphasized by
the notation y(di). Furthermore, the input effort is no longer integrated, which resulted
in control parameters with significantly smaller values as in the previous case. Using the
DSS approach, the optimization problem is now given as

JN (d; τi) := min
d ∈ RN

N−1∑
l=0

`(yi+l, di+l)

s.t. d ∈ [0, d̄],

dc ∈ [0, d̄c],

(4.21)

where, d = [di, di+1, . . . , di+N−1] is the optimal input sequence where each element is con-
strained to lie in the interval 0 ≤ di+l ≤ d̄, denoted by d̄ = d̄1 (where 1 is an N dimensional
column vector with all of its entries being equal to 1), and the second group of constraints
0 ≤ dci+l ≤ d̄c denote the cumulative dosage associated with each di+l, from which dc = d̄c1.
The cumulative dosage dci+l is defined here as the sum of doses in the past 10 days,

dci+l =
∑
J

dj , J := { j | ti+l − 10 ≤ tj ≤ ti+l }. (4.22)

According to [R25] the maximal tolerable dose (MTD) of PLD in mice is 8 [mg/kg] which
could be repeated in every 10 days without triggering an irreversible weight loss, leading to
a threshold of 16 [mg/kg]. To define a safe cumulated dose threshold in the constraint, the
maximum given PLD of 16 [mg/kg] was lowered to d̄ci+l = 14 [mg/kg] in 10 days to minimize
further the possibility of severe systemic toxicity. The upper bound for each dose was also
lowered to d̄i+l = 6 [mg/kg] for the same reason. Note that the positivity constraint on
the states were omitted here. In the case of the DMS, the artificial initial conditions are
also optimized, which can lead to negative state values during the optimization, hence
the inclusion of the positivity constraint is essential. By contrast, the DSS approach only
simulates the differential equations from positive initial conditions, resulting in a positive
trajectory in every instance.

In the first implementation, three days of resting time were assumed between each
consecutive treatment, which resulted in fixed prediction intervals in the horizon. Never-
theless, during the experiments, this interval changes, because the administrations take
place on Mondays and Thursdays or Tuesdays and Fridays. In practice, this means that
the intervals of the optimization change depending on the day on which the optimization
takes place, such that

(τl, τl +∆τ ], ∆τ =

{
3, if τl is Monday or Tuesday
4, if τl is Thursday or Friday

τl+1 = τl +∆τ,

τ0 = τi, l ∈ {0, . . . , N − 1} ⊂ N0

(4.23)
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with an optimization variable di at each τl [C7]. The optimization problem (4.21) was solved
using fmincon with the option Algorithm: patternsearch. This is a derivative-free method,
for which better convergence was expected since I originally assumed that the convergence
issues arise from the finite difference calculations during the optimization. Nevertheless,
as the second experiment showed, this hypothesis was not true, and additional modifica-
tions had to be implemented, which will be shown in the next section.

4.2.7 Third implementation

Identifying the source of numerical errors during the computations was not trivial, and
several modifications had to be implemented in order to completely eradicate their pres-
ence. In the last iteration of the design, the cost function was altered and additional scaling
factors were introduced to this end. One source of such errors could be attributed to the
different scales on which the state variables evolve, thus the state variables were rescaled
as

µ1 =
x1
x1c

, µ2 =
x2
x2c

, µ3 =
x3
x3c

, µ4 =
x4
x4c

, µu
i =

ui
x3c

(4.24)

which lead to the scaled system model

µ̇1 = (a− n)µ1 − b
µ1µ3

ED50 + µ3x3c

µ̇2 = nµ1
x1c
x2c

+ b
x1c
x2c

µ1µ3x3c
ED50 + µ3x3c

− wµ2

µ̇3 = −(c+ k1)µ3 +
x4c
x3c

k2µ4

µ̇4 =
x3c
x4c

k1µ3 − k2µ4

(4.25)

with the corresponding input rule

µ(t+i ) = µ(t−i ) + (0 0 1 0)>µu
i , (4.26)

where x1c, x2c, x3c, x4c are scaling constants. The particular values of the scaling parame-
ters were determined to be x1c = 1, x2c = 1 x3c = ED50 and x4c = ED50. The reason behind
this choice is that for small values of ED50 in the model, the term

b
x1x3

ED50 + x3
(4.27)

has a sharp characteristic when x3 is varied. Since the optimized dose has a direct effect
on x3, the gradient computed with finite differences can take up high values, leading to no
convergence in the optimization. By scaling x3 to the same region as ED50 the problem can
be efficiently tackled.

Technically, the scaled model only plays role in the prediction part. Before fmincon
is called, the initial guess for the optimized doses is scaled by the value of ED50, together
with the initial condition of the simulation, provided by the MHE. After the optimization is
performed, the resulting optimal vector of doses is then scaled back to their original values,
which are then applied to the subjects.

In addition, the cost function was also changed to

`(yi, di) =

∣∣∣∣yi − yref

ȳ

∣∣∣∣+ r
di
d̄
, (4.28)

where yi is the simulated tumor volume from the transformed model (4.25) at time τi, and
ȳ is the maximum value that the tumor can attain. The quadratic penalty was replaced
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with the absolute value function, which also improved the stability of the optimization
procedure. The scaling term ȳ was chosen to be 5000[mm3], which is the maximal volume
that the tumor can attain before the subject is sacrificed. Initially, it was assumed, that
this maximum value is unknown a priori, and the scaling term was set to be equal to the
tumor volume at the beginning of the algorithmic therapy. Nonetheless, the performance
of numerical optimizers increases if the terms in the cost function are between the interval
[0, 1], which justifies the use of the upper bound [R64]. These changes lead to the final
optimization problem, which had the same structure as the second variant:

JN (d; τi) := min
d ∈ RN

N−1∑
l=0

`(yi+l, di+l)

s.t. d ∈ [0, d̄],

dc ∈ [0, d̄c].

(4.29)

4.2.8 Virtual population generation

For each version of the controller, a different tuning procedure was used. The first iteration
of the design was tuned empirically in silico, where the goal was to vary the control param-
eters until the first generated dose was smaller than the maximum admissible MTD. In
order to automate the process and create a systematic tuning procedure, a virtual popula-
tion was generated using the SAEM method for the second and third variants [C7]. Since
SAEM uses a mixed-effect representation of the model parameters, it is able to compute
both the population average and the corresponding covariance matrix. These two values
then can be used to generate an arbitrary number of parameter sets, which form the basis
of the virtual population. Additional constraints on these model parameters can also be
imposed so that the resulting values represent tumors that behave similarly to their real
counterparts.

At the time of the second implementation of the controller, only the 10 experimental
time-series were available from [R25]. Instead of fitting the parameters of the model di-
rectly to each time series, they were cut into multiple intervals, each containing one re-
mission relapse cycle. This means that each cycle begins with tumor growth which is then
subject to injection treatment and then followed by a shrink to a minimum value. An exam-
ple can be seen in Figure 4.5, where the grey vertical lines are the cuts. Resistant artifacts
were also excluded, where the injection does not lead to remission, because these fits re-
sult in most likely uncontrollable parameter configurations. The primary reason behind
cutting the time series is to obtain additional samples on which the identification can be
performed. Since the model parameters are assumed to be time-varying, one can think of
each cut to be a virtually different subject with its own constant model parameters. Cutting
the times series in this way resulted in 21 time series. At the time of the implementation of
the second controller, the FIE had not been implemented, and hence, the MATLAB routine
sbiofit was used with the scattersearch option to compute the initial least squares param-
eter estimates, with the same initial parameter vector and bound constraints that can be
seen previously in Table 4.1. These obtained values and also their average was used as
an initial condition in separate instances of the SAEM method. At the end of the identi-
fication, the parameter resulting in the lowest RMSE score was chosen to determine the
fixed-effects and covariance matrix. The estimated, log-transformed fixed effects are con-
tained in Table 4.3 with their standard errors and random effect coefficients. In order to
obtain physiologically sensible state trajectories, the deviation of c and k1 was penalized in
sbiofitmixed by setting the Cov0 parameter to diag([0.1, 0.1, 0.1, 0.1, 0.1, 10-6, 10-6, 0.1, 0.1]).

According to the mixed-effect principle, one parameter sample is from the normal dis-
tribution θ∗i ∼ N (θ∗, Σ∗) , where θ∗i is the generated parameter set, θ∗ is the estimated



53 4.2. NONLINEAR MODEL PREDICTIVE CONTROL

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

Time [day]

T
um

or
vo

lu
m

e
[m

m
3 ]

Figure 4.5: An example cut of the in vivo time series S0,6. Between each grey line a single
growth-shrink cycle is contained which is assumed to be independent from the rest of the
time series.

fixed effects in Table 4.3., and Σ∗ is the random effect covariance matrix, which is a di-
agonal matrix with elements from the last column in Table 4.3. Because the values in
Table 4.3 are log-transformed to obey the positivity constraint in the parameters, one must
back-transform the calculated parameters θ∗i -s to obtain their values in the original pa-
rameter space such that θi = exp(θ∗i ). For each sample, a corresponding initial value
x(0) = [x10, 0, 0, 0] was drawn from the uniform distribution x10 ∼ U(lx, ux), where the
parameters lx = 0, ux = 1383 corresponds to the smallest and largest tumor volume where
the first dose was applied in the remission-relapse cycle. Statistics were further generated
about the cycles which were used to impose certain conditions during the generation such
that the generated tumors mimic real dynamics. The first statistics was the mean duration
of the cycles t̄r = 26.08 [day] with their standard deviation σr = 11.13 [day]. The second
was the mean value of the difference between the peak tumor volume and the starting vol-

Table 4.3: Log-transformed parameter values of the identification for the cut time series
from experiment S0

Parameter Fixed
effect

Back
transformed

Standard
errors

Random effect
covariance

a −0.84 0.43 0.21 0.087
b −0.2 0.82 0.17 0.251
n −2.03 0.13 0.65 0.133
w −2.44 0.09 0.17 0.417

ED50 −6.71 0.0012 32.7 0.008
c 0.46 1, 58 3.19 5.9 · 10−8

k1 1.46 4.3 58.8 2.38 · 10−8

k2 1.42 4.14 49.96 0.228
x0 4.08 59.14 0.35 1.78
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Table 4.4: Log-transformed parameter values of the identification for 51 subjects, originat-
ing from experiments S0 and S1.

Parameter Fixed
effect

Back
transformed

Standard
errors

Random effect
covariance

a 0.26 1.3 0.18 0.013
b 0.03 1.03 0.21 0.078
n 0.01 1.01 0.23 0.018
w −1.89 0.15 0.16 0.18

ED50 −1 0.37 1.17 0.452
c −0.81 0.44 1.02 0.02
k1 1.14 3.13 1.87 0.18
k2 0.23 1.26 1.2 0.22
x0 5.26 192.48 0.22 0.717

ume where the dose was applied, denoted by ȳp = 1057.42 [mm3] with standard deviation
σp = 614.45 [mm3].

During the generation, three conditions were imposed, that each θi-s must obey. The
first condition is that for each θi the untreated tumor should grow, i.e., a−n > 0. The second
condition filters those parameter sets for which the tumor is resistant and grows contin-
uously for an initial 8 [mg/kg] dose. The last condition restricts the maximum deviation
of the tumor volume between the volume at the injection and the peak tumor volume to
yp±σp. These rules ensure that the generated parameter sets lead to non-resistant tumors
while they also share similar traits to their real-life counterparts. Using these restrictions,
a virtual population Vr with 100 elements was generated that will be used for robustness
analysis. A different population Vo was also generated with the additional condition, that
each tumor should shrink under 10 [mm3] between tr ± σr, from a random initial condition
x10 with initial dose 8 [mg/kg]. The role of Vo is to provide virtual species for which a single
dose can reduce the tumor completely so that one can easily compare the effectiveness of
algorithmic therapies, attributed to different control parameters, with the MTD injection.
The generated virtual populations can be seen in Figure 4.6.

In the case of the third iteration of the controller design, the virtual patients were
generated in essentially the same manner. A minor difference was that instead of using
the heuristic scattersearch algorithm of MATLAB, the FIE was employed to determine
the initial conditions for the SAEM. Furthermore, obtaining more data from additional
experiments does not require one to cut the time-series into different regions, as in the
previous case. The obtained parameter values for 51 time-series can be seen in Table 4.4.
Since the additional time-series contain significantly more doses due to the metronomic
nature of these therapies, the pharmacokinetic values can be estimated more accurately,
hence their covariances were not penalized in the beginning of the estimation.

4.2.9 Tuning the controller

To determine the control parameter r, a grid search was performed on a set of different
values [C7]. For each value in the set, the controller was tested on each virtual patient
in Vo. Then, for all virtual patients, the doses applied in the simulations, and the final
tracking errors at the last time instance were summarized. These two performance indices
are then compared for the different controller values by forming a Pareto front.

The considered time span of the simulations was 100 days for each sample. During
the tuning, the model parameters were assumed to be known precisely, and the full state
measurement is available so that the use of MHE is omitted which alleviates the com-
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putational burden of the tuning procedure. The grid search was performed on the set of
values r ∈ 10i, i ∈ {−7, . . . , 3} with N = 4 which is two weeks of prediction, with prediction
intervals defined in (4.23). The setpoint was set to be yref = 1.

The grid search for the second iteration of the algorithm revealed that using smaller
values for r lead to better convergence properties in each of the virtual patients, meaning
less faulty iterations at each τi. For each r value the total amount of drug administered
for the 100 patients was calculated in Vo and the sum of the tracking error at the end of
the simulation interval, denoted by usum and esum respectively. One can see in Figure 4.7.
that by decreasing the value of r, the total administered drug increases while the tracking
error shrinks. It can be seen that the optimal choice, which results in the best trade off
between the two metrics, is r = 1, for which usum = 155 [mg/kg], esum = 176 [mm3] which is
significantly better than the single 8 [mg/kg] dose case with usum = 800 [mg/kg], esum = 414
[mm3].

4.2.10 In silico validation

The first controller was tested in silico, using model parameters obtained from [R37], same
as in Chapter 3, Section 3.6. Each simulation was run for 350 days, resulting in 50 opti-
mization instances on the whole interval, corresponding to weekly dosing [C5].

Using these simulation settings, the control parameters were empirically determined
through simulations. First, the horizon length was determined by choosing a length long
enough that the tumor is able to enter a remission phase. Using data from the first experi-
ment, this was determined to be N = 3 with τi+1 − τi = 7, resulting in a single dose weekly.
For each model parameter combination, a different r value had to be tuned. The goal of
the tuning was to find a particular r value that resulted in an initial dose smaller than the
MTD. Fist, the value of r = 100 was chosen, after which the first dose was computed. If this
does exceeded the MTD, then r was increased by an order of magnitude (e.g. 101), until the
first computed dose was smaller than the MTD. Consequently, their values were chosen to
be r = {105, 104, 106, 105, 104, 105, 105, 104} for each subject respectively.

As one can see in Figure 4.9., the controller was able to handle the cases where the
model parameters represented controllable systems. From the two uncontrollable cases,
numerical errors were present in S0,1, which required some modifications regarding the
proposed algorithm, which will be shown in Section 4.2.6. Before the first experimental
validation, the dynamical model was also replaced with the four-state dynamical model
with the same control parameter configurations. Furthermore, the time between each
consecutive injections were lowered to τi+1 − τi = 3. Because PLD treatment is given
through the tail vein of the animal, a minimum of 3 days recovery is required between
drug injections. Technically, the frequency of tail vein administration should be limited
to a minimum to avoid unnecessary stress ([R65]), and, additionally, the PLD treatment
could cause inflammation and necrosis if administered more frequently. This also entails,
that the length of the prediction horizon must be enlarged, which I chose to be N = 7
to compensate for the desired three-week prediction interval. The corresponding state-
estimator for this controller was developed in [R51], where only a subset of the original
model parameters was estimated, namely a, b, n and w. This algorithm was then used in
the first experiment, which will be described in Chapter 5.

The second and third controllers were validated on the robust parameter set Vr, con-
taining 100 subject [C7]. Each simulation was performed for up to 350 days, under which
the majority of the population was able to achieve reference tracking. However, in some
cases, reference tracking was unsatisfactory due to the short prediction horizon. As a con-
sequence, the parameter N was enlarged to N = 8, due to its role in the stability of the
control, which solved some of the instances. The final solution was to change the control
penalization factor to r = 0.1, which resulted in perfect tracking for each virtual patient.
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The solution curves for the second controller can be seen in Figure 4.10.
For the third design a new robust parameter set Vr was generated using values from

Table 4.4. The control parameter was also changed back to r = 1, since the doses applied
during the in vivo experiment turned out to be too high which lead to toxicitiy in some sub-
jects. The resulting in silico curves can be seen in Figure 4.11. Comparing the results with
the previous case, two qualitative differences can be seen. In Figure 4.11, the maximum of
the tumor volume is higher than in the previous case, since the control action is penalized
more. Also, this effect can be attributed to the parameters of the virtual patients, since
they were generated from additional data. Moreover, the steady state value of the tumor
volume is more varied around the setpoint as in the former case. Using r = 0.1, the sum
of absolute errors at t = 350 was 3.78 [mm3], which for the r = 1 case was 1130 [mm3].
Nonetheless, the experience from the in vivo validation of the second implementation in-
dicates that choosing a larger control penalty is more beneficial due to the positive effect
regarding systematic toxicity.

4.3 In silico validation of the NMPC-MHE scheme

The algorithms presented in this dissertation were tested in silico [C7] and in vivo [C6]. In
the previous section, one could see in silico results for the controller on generated virtual
populations, which showed their qualitative behavior. Before initiating an in vivo exper-
iment to the end of validating the algorithm, the full proposed approach has to be tested
in silico. This means, that the NMPC must be combined with the MHE, and additional
effects must be included in the simulations, for example adding sensor noise and limiting
the measurements and doses to specific days. In the current section, I will present the in
silico validation of the full algorithm.

At the first implementation of the controller, a detailed sensor model and the virtual
populations had not yet been available. As a consequence, the combined approach could
not had been tested systematically through simulations before the first experiment, only
their separate components, shown in Section 4.2.10 and [R51]. However, in the case of the
second and third implementation of the controllers, the in silico validation was performed
on the robust virtual population Vr. For each parameter set in Vr, the model was simulated
with added sensor noise. Then, the MHE used these simulated measurements to determine
the state estimates that the NMPC further utilized to compute the doses at the control time
instances. This combined approach is visualized in Figure 4.12.

First, a noise model was developed to mimic the measurement errors arising from the
caliper measurements. The noise model is taken from [C7], where a lowpass Butterworth
filter was applied in a zero-phase setting. The noise is approximated as the difference
between the raw, and the filtered time series. From these error terms, a histogram was
created with five bins, each containing an approximately equal number of measurements.
Then, the standard deviation of each bin is calculated, which can be accurately approxi-
mated by an affine function of the volume, which can be seen in Figure 4.13. The generated
noise is assumed to be an additive Gaussian process in the form of

σ(yk) = 0.1 + 12.4yk,

ν(yk) ∼ N (0, σ2(yk)), (4.30)
ỹk = yk + ν(yk),

where yk is the simulated output of the model at time tk and ỹk is the output with added
measurement noise. The exact values were computed from the time series of the baseline
experiment, namely S0,1 − S0,10.

For the second implementation of the controller, the robust virtual population was gen-
erated using the values in Table 4.3 on which its performance was evaluated. The controller
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was augmented with an MHE, implemented in [R51] to provide the state estimates. The
control parameters were set to r = 0.1 and N = 8, as determined previously, with a refer-
ence yref = 1 and maximum simulation interval 350. During a week, five measurements
are assumed to be taken from Monday to Friday, and the administrations are applied twice
per week, as described in (4.23). In total, the algorithm was tested on 25 virtual patients
[C7].

The results of the simulation can be seen in the top part of Figure 4.14., where each
tumor shrinks down to the neighborhood of the setpoint. On average, the virtual patients
received 16.03 [mg/kg] dose during the simulation interval. Because measurement errors
are introduced, it is not obvious to determine whether true setpoint tracking was achieved
in this case. Nevertheless, at the end of the simulation, the largest tumor volume was 31.36
[mm3], indicating a significant decrease in the tumor sizes compared to their initial value.

In the case of the third experiment, the same sensor model was used in the simulation
study. Moreover, the MHE used in the previous experiment was replaced with the one
developed in Chapter 4.1. The virtual population was also replaced using the updated
parameter estimates, contained in Table 4.4. The parameters of the simulation and the
controller remained the same, but the control penalization was modified to be r = 1 due to
previous considerations on the generated doses in the second experiment.

The results of the simulation can be seen in the bottom part Figure 4.14. It can be im-
mediately seen that the reduction of tumor volume was not as significant as in the previous
case due to the larger penalty on the control action. Here, the maximal tumor volume at
the end of the simulation was 231.47 [mm3] and the virtual patients received 153.11 [mg/kg]
drug during the treatment on average. Note that the amount of drug that is given during
the therapy is significantly larger than in the previous case, while the final tracking error
is also higher. This result contradicts the expected behavior of the increased penalization,
namely the amount of drug should be smaller than in the previous case. This effect can
be explained by comparing the values in the tables that were used during the generation
of the virtual populations. In particular, the value of ED50 is notably higher in the second
case, namely 0.3679, compared to 0.0012. Since ED50 is directly linked to x3 and the applied
dose di, higher parameter values yield an increase in the computed doses.
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Figure 4.6: The two generated virtual populations Vr and Vo using the values from Table
4.3, subject to a single 8 [mg/kg] administration on the first day.
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Figure 4.7: Pareto front of the grid search for varying r values for the optimal virtual
population Vo, generated from the values listed in Table 4.3.
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Figure 4.9: Results of the optimization for S0,1, S0,2, S0,3, S0,4, S0,5, S0,6, S0,8 in a descend-
ing order from top to bottom.
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Figure 4.10: Resulting tumor volumes for the robust dataset Vr for the second implemen-
tation of the controller.
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Figure 4.11: Resulting tumor volumes for the robust dataset Vr for the third implementa-
tion of the controller.
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Figure 4.12: Visualization of the full control loop. The black curve is the evolution of
the tumor volume, the turquoise curve is the estimated tumor volume provided by the
MHE, and the red curve is the prediction of the NMPC, based on the optimal sequence
of administrations u∗. Black dots (ỹk) denote the volume measurements, turquoise dots
(ŷk) denote the estimated volumes, and tk denotes measurement time instances. In this
diagram, tk = τi, such that measurements and administrations are performed on the same
day.
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Figure 4.13: The calculated standard deviations and their approximation. Each shaded
region from 1 to 5 represents a bin, where the deviation was calculated.



64 4. Chemotherapy optimization

0 50 100 150 200 250 300 350
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Time [day]

T
um

or
vo

lu
m

e
[m

m
3 ]

0 50 100 150 200 250 300 350
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Time [day]

T
um

or
vo

lu
m

e
[m

m
3 ]

Figure 4.14: In silico results for the second and third implementation of the controller on
the robust set generated from Table 4.3. and 4.4.



5
Experimental validation

Thesis Group 3: In vivo validation of the control algorithms

Thesis 3
I tailored the algorithms for in vivo experimental validation us-
ing mice. The first two iterations of the algorithm were tested
in separate mice experiments, which indicated that the proposed
schemes can also be viable in practice.

Publications relevant to the theses: [C6, C7, C5]

Thesis 3.1
I generated closed-loop therapy protocols of the first iteration of
the NMPC algorithm for in vivo validation. Results showed that
the closed-loop approach is able to achieve remission in the sub-
jects without using excessive amount of drug during the therapy.

The results can be seen in Section 5.2.

Thesis 3.2
I implemented the second iteration of the NMPC controller for
closed-loop in vivo validation. During the experiment, I have gen-
erated the optimal dosages for the mice using the algorithm. Re-
sults showed that mice treated with the algorithm had similar
mean survival as the conventionally treated subjects, however,
some mice reached significantly longer survival.

The results can be seen in Section 5.5.

In the current chapter, the in vivo validations of the designed controllers are presented.
Firstly, the baseline dataset is introduced, where the standard protocol of chemotherapeu-
tic administration was used to treat 10 subjects with PLD. Consequently, the experimental
setup, objective, and results of the controller’s first, second, and third implementations are
shown. The baseline experiment is referred to as S0, while the first, second and third are
with S1,S2 and S3 consecutively. A given mouse in an experiment is denoted by Si,j , where
i is the experiment, while j is the subject identifier. Currently, there are three finished
experiments (including the baseline), and one is ongoing.

Concerning the in vivo validation, all animal housing and breeding processes and ex-
perimental protocols were approved by the Hungarian Animal Health and Animal Welfare

65
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Directorate according to the EU’s most recent directives. All surgical and treatment pro-
cedures were performed according to the Committee on the Care and Use of Laboratory
Animals of the Council on Animal Care at the Institute of Enzymology, Eötvös Loránd
Research Network in Budapest, Hungary (001/25746/2015).

5.1 Baseline dataset

In the baseline experiment, denoted by S0 and described in [R25], no algorithmic protocol
was employed. This experiment aimed to compare the multi-drug resistance properties of
PLD to regular doxorubicin using the standard protocol. In the standard (or conventional)
protocol, mice are dosed when the tumor grows above 200[mm3] in a subject (called the
tumor trigger). When the volume is above the trigger, the mice receive the MTD (8 [mg/kg]
dose) every 10 days until the tumor volume is reduced to 50% of its original value. In the
case of the tumor trigger, the volume is calculated as

yi = y(ti) = length(ti) ·
width(ti)2

2
, (5.1)

which is a standard method to calculate the volume in mice experiments, yet less accurate
than the formula shown previously in (2.1) according to [R35]. In order to monitor the state
of the tumor, measurements were taken at least three times per week, once they became
tangible. During the experiment, 10 mice were administered with PLD.

While in this experiment, no algorithm was validated, many of the results presented
in the dissertation used these data, hence I found it essential to include it in the thesis
as a separate entity. Firstly, this data set was used initially to identify the parameters
of the three states model in [R37]. These identified parameters were then employed to
validate the RFPT method in Chapter 3. Secondly, this dataset was used to generate the
first virtual population to tune the NMPC for the first experiment S1. Additionally, the
standard therapy used in this study can be used to compare the algorithmic therapies
validated in the following experiments. The full dataset can be found in [R25].

5.2 First experiment

The goal of the first in vivo validation of the controller was to validate whether the algo-
rithm is capable of decreasing the tumor volume using less amount of drug than the stan-
dard therapy [C6]. The controller was described in Section 4.2.5., while the MHE used in
the study was implemented in [R51]. Chronologically, the model with four states was devel-
oped a few weeks before the experiment was initiated. Since this model could be identified
more accurately, the three-states model was replaced in the NMPC for this variant. This
only caused a change in the artificial initial conditions, which became si+l = [y0, 0, 0, 0].

In the first experiment S1, 41 mice were divided into four distinct groups. When the
tumor trigger became active for the first time, the mice received a dose of 0.5, 1, 4, or 6
[mg/kg], according to the group to which they were assigned. Five minutes after this first
dose, three mice were sacrificed from each group (in total 12) to measure the serum level
of the drug using mass spectrometer. The rest of the mice were then assigned randomly
to four different groups, in which they received therapies based on different algorithmic
considerations. Since these therapies are based on different algorithms, they were excluded
from the following discussion. Moreover, due to the limited number of mice, there was no
control group in this study.

Six mice were assigned to the group regarding the closed-loop NMPC-MHE therapy,
denoted by S1,j with j = 1, 2, . . . , 6. From these subjects, S1,1, S1,2, S1,3 received a 4 [mg/kg]
initial dose and S1,4, S1,5, S1,6 got 6 [mg/kg].
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For these mice, the entire course of the experiment is described here. First, the exper-
iment started with the implantation of cancerous cells in mice. When the tumor trigger
became active, the mice received a single dose of either 4 or 6 [mg/kg] for identification. A
day before the algorithm’s first administration was computed, the model parameters of the
tumor with four states were identified (after estimating the pharmacokinetic parameters)
using the SAEM algorithm solely, which can be seen in [C6]. The initial plan was to initiate
the algorithmic therapy individually when the tumor trigger becomes active again. How-
ever, after 23 days, the therapy started for each mouse regardless of the size of their tumor,
due to a request by the staff in the animal house such that the logistics of the experiment
could be minimized. The therapy then lasted for 27 days, under which 9 doses were com-
puted. The administrations took place every Monday and Thursday (except the first dose
computed on Friday) for four weeks. After 32 days, the algorithmic therapy was stopped,
and the experiment concluded when each mouse passed away. The experiment occurred
between August 8, 2020, and January 15, 2021, and the doses were generated between
September 4, 2020, and October 1, 2020. During the 27 days of the automated therapy,
subject S1,4 was in complete remission, hence it is omitted from the following discussion.

For each mouse, the first task was to tune the controller, since at this point, the virtual
population-based tuning approach had not been implemented. Consequently, the control
penalization r had to be tuned individually for each identified parameter set in the same
manner as in Section 4.2.10. The r value for mice S1,1, S1,2, S1,3, S1,5, and S1,6 was found to
be 107, 105, 107, 106, and 106 respectively. The reference volume to be tracked was yref = 1,
and y0 was the tumor volume measurement on the first day of the closed-loop trial.

During the experiment, the value of r was increased by an order of magnitude in the
case of S1,1, S1,5, and S1,6. This change was performed to avoid cumulative toxicity, which
was not accounted for explicitly in this version of the controller. In particular, for S1,1, the
control parameter was set to r = 108 on September 8. For S1,5, r was changed to 107 on
September 10 and 108 on September 24. Finally, the r value of S1,6 was modified to r = 107

on September 10.
Results of the experiment for subjects S1,1 and S1,1 can be seen in Figures 5.1 and 5.2,

while the other time series are presented in Figures B.1, B.2 and B.3 in Appendix B. In each
figure, the first plot shows the interpolated evolution of the tumor (blue line), calculated
using (2.1), with the actual measurements (red crosses) and their estimates, produced by
the MHE (black dots). The second plot shows the corresponding dosing schemes, where the
first dose is used to identify the parameters, and the controllers generate the remaining
doses. The last plot shows the time-varying parameters computed by the MHE.

It can be clearly seen that the generated protocols can induce remission in the subjects,
invariant to the tumor size on the first day of the treatment, similar to the standard pro-
tocol. In each case, the tumor volume shrank under 200[mm3] during the 27 days of treat-
ment. This means that the first objective of the validation was successful, even though
human intervention had to be utilized during the experiment.

Regarding the initial goal of the experiment, it is not a simple task to determine whether
the algorithm uses less drug than the standard protocol. A possible way is to compare the
sum of doses in the one month interval produced by the standard and algorithmic proto-
col. In the baseline experiment (standard protocol), each initial dose reduced the tumor
volume ultimately. This means that injecting the MTD when the tumor trigger is initially
activated leads to complete remission in every case, and the tumor shrinks below the trig-
ger. However, when the tumor trigger became active again, additional doses had a weaker
effect and had to be repeated at least two times (except for S0,9, referred to as PLD9 in the
original article) to achieve the same effect. Consequently, under the 27 days of treatment,
this would yield a maximum of 16 [mg/kg] (twice the MTD) PLD in the case of the standard
therapy.
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Table 5.2. summarizes the total doses given through the experiment, and the time when
the subject was terminated, denoted by dsum and tsurvival, respectively. By subtracting the
correct initial dose (4 or 6 [mg/kg]) from dsum in the case of each mouse, the result is smaller
than 16 [mg/kg]. Nevertheless, this comparison could be improved by accounting for the
substantial level of inter-patient variability, which affects the effectiveness of the doses.

Concerning the parameter estimation, only the model parameters a, b, n, and w were
estimated, as mentioned in Section 4.1.1. It can be seen from the diagrams that while a, b,
and n show a significant variation in their values, the washout term w stays essentially
constant. The variation might be attributed to the s.l.i. property of the parameters, as
explained in Subsection 4.1.1. Nevertheless, the estimates could follow the measurements
with only a negligible error, as seen in the parameter estimation figures.

The first experimental validation showed that the algorithm had several flaws that had
to be corrected. The first and most severe issue was that the algorithm had to be tuned
manually to decrease the amount of drug given to the subjects. In order to overcome this
issue, a constraint was built in the next iteration that accounts for the sum of the doses
given in the past days, as described in Section 4.2.6. Additionally, this can also be asso-
ciated with the empirical tuning of the controller, for which the tuning process described
in Chapter 4.2. was developed. The experiments also had some limitations, including the
length of the automated therapies (which was only a month long) and the lack of a control
group. Moreover, the comparison between the standard therapy and the algorithmic was
not straightforward due to the short time interval in which the administrations took place.

5.3 Second experiment

In the second experiment, the goal was essentially the same as in the case of the first
experiment, i.e., validating whether the controller can induce significant remission using
less drug than the standard therapy. In this case, the second version of the controller
was tested, which was previously introduced in Section 4.2.6. At this point, the virtual
population-based tuning and validation were established (shown in Section 4.2.10.), which
was run before the in vivo experiment. The corresponding MHE was the same as in the
previous experiment, only with minor alterations. Additionally, the experimental protocol
was modified so that the obtained results could be more easily compared with the standard
protocol.

In S2, there were 49 mice in total. Each mouse was assigned into one group G1 or
G2, where they received an initial dose of either 4 [mg/kg] (in G1) or 6 [mg/kg] (in G2) for
parameter identification when the tumor trigger became active. In G1 and G2 there were
22 and 27 mice respectively. Here, no smaller initial dose was injected (i.e., 0.5 or 1 [mg/kg])
since they were found to be ineffective in the first experiment. Additionally, no mice were
sacrificed after the initial dose, unlike in the first experiment.

After the initial dose, each mouse was randomly assigned to one of three groups. The
first group received the NMPC-MHE therapy and had 21 mice in total, denoted by S2,j , j =
1, 2, . . . , 21. The second group also had 21 mice, which received a therapy based on different
algorithmic considerations, and thus it was omitted from the following discussion. The
third group was a control group S2c, and had 7 mice, denoted by S2c,j , j = 1, 2, . . . , 7. The
control group received the standard therapy, with the exception that instead of using the
MTD (8 [mg/kg]) for each administration, only 6 [mg/kg] was injected into the mice. This is
because, in the algorithmic therapies, the same 6 [mg/kg] hard constraint was used due to
frequent administrations.

In the case of the NMPC-MHE group S2,j , the mice S2,1-S2,11 received 4 [mg/kg] initial
dose, while the remaining mice S2,12-S2,21 were subject to an initial dose of 6 [mg/kg].
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Figure 5.1: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S1,1. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations produced by the MHE.
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Figure 5.2: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S1,3. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations produced by the MHE.
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After the initial dose, the algorithmic therapy was initiated when the tumor trigger
became active again. Before the first administration, the SAEM algorithm was run to
obtain individual parameter fits. In this case, the MHE only used the population average
as the initial parameter guess for each mouse, which was p = [0.71, 0.94, 0.13, 0.23,
0.0016, 0.52, 65.73, 71.21].

Each mouse was dosed twice a week on each Tuesday and Friday. The experimental
data spans March 24, 2021, and March 7, 2022. The algorithmic therapy started on April
13, 2021, and lasted until December 10, 2021, or the termination of the given subject. The
reason for halting the experiment on December 10, 2021, was that while five subject was
still alive, their physical condition was poor due to the emergence of systematic toxicity.
The results of the experiments can be seen in Figure 5.3., 5.4 and 5.5, while the remaining
can be found in Appendix B., between Figures B.4. and B.21.

The results show that the applied doses are much higher than in the previous experi-
ment. Since one experiment goal was to test the fully automated algorithm, no adjustments
were made to the control parameters during the experiment. The leading cause of death
was cumulative toxicity for most mice, even with the hard constraint dc in (4.21). In par-
ticular, for subjects, S2,2, S2,4, S2,6, S2,8, S2,9, S2,12, S2,14, S2,16, S2,19, S2,20, and S2,21 the
cumulative toxicity leads to a sudden decrease in their mass, hence they were sacrificed to
avoid suffering of the animal. The most severe side effect was observed in the case of S2,5,
where between days 76 and 132, the therapy had to be stopped until the subject recovered
from its adverse condition. As previously mentioned, the algorithmic therapy was stopped
on day 261, since in the remaining living mice S2,5, S2,10, S2,11, and S2,15 the tumor volume
was already minimal and their physical condition was poor. For subjects S2,1, S2,3, S2,7,
S2,13 and S2,17 one can observe drug resistance, as additional doses did not have any effect
on the evolution of the tumor volume. Table 5.4 shows the total doses and survival times
of each subject.

It can also be seen from the diagrams that in complete remission, there is a considerable
variation between the doses given to a subject, whereas the tumor volume stays relatively
constant. This can be attributed to two factors: the control parameter of the NMPC and
the MHE strategy implemented in this algorithm.

Since in the second implementation, the control penalty was chosen to be r = 0.1 based
on the in silico results (as described in Section 4.2.10.), even small measurement errors
could lead to significant changes in the computed doses. Moreover, during the experi-
ments, the slightly modified MHE had a high variation in the estimated model parameters
between each measurement. Since these parameters are used in the NMPC optimization
and affect the calculated doses, they strengthen the effects of low penalization. In each
case, there is a significant variation between each consecutive estimated parameter, and
in many cases, their values jump between the endpoints of the box constraint. Addition-
ally, these effects then propagate to the estimated tumor volumes, which are not able to
adequately track the measurements qualitatively.

For example, in Figure 5.4, there are two peaks in the estimated volumes (top figure,
black dots), which shows a significant time delay in the estimations. This time delay was
also present in subjects S2,3 and S2,18. Also in Figure 5.5., while there is no time delay, the
estimator was not able to adequately estimate parameters when drug resistance starts to
emerge after day 120. The same effect can be observed in the case of S2,1, S2,13, and S2,17.
For the remaining subjects, where significant remission was achieved, the MHE was able
to capture the time evolution of the measurements, but the estimated parameters showed
high variations in these cases as well.

Convergence issues in the NMPC were also present during the experiment, which was
also associated with the scaling term of the tumor volume in the cost function. This was
chosen to be the tumor volume at the beginning of the algorithmic therapy since it was



72 5. Experimental validation

assumed that no apriori information was available on the maximum value of the tumor
volume. Nonetheless, this assumption was refined later since if the tumor exceeds a par-
ticular volume, the mice must be sacrificed, otherwise, it is considered animal cruelty. This
means that the tumor volume will always move in a fixed domain, which can be used to
normalize the data, leading to better optimization convergence. There should also be a
maximum limit on the tumor volume in humans since the tumor can not grow indefinitely
without killing the patient.

5.4 Third experiment

The aim of the third experiment was also to test whether the algorithm could induce remis-
sion in the tumors through the computed doses using less drug than the standard protocol.
Additionally, a secondary goal was to investigate if the additional changes in the algorithm
led to a positive outcome regarding its performance. The controller in this study was based
on (4.29) in Subsection 4.2.7., and the corresponding MHE was implemented in Section
4.1.4. The experimental protocol was also slightly modified in this case, such that it ex-
cludes the identification dose and permits the possibility of only a single dose per week.

There were 57 subjects in the third experiment S3. Each animal was assigned to one of
three groups. In the first group, there were 21 mice in total, denoted by S3,j , j = 1, 2, . . . , 21,
and they all received the NMPC-MHE therapy. In the second group, there were also 21
mice, and they received therapies based on a different strategy, thus they were excluded
from the following discussion. The third group was the control group S3c which had 12 mice
in total, denoted by S3c,j , j = 1, 2, . . . , 12, and they received the standard therapy without
any modifications.

An essential change in the experimental setup was that, in this case, no identification
dose was given prior the algorithmic treatment. This is a critical step in adapting the al-
gorithm to human use, since, in a realistic scenario, one should immediately start therapy
when a tumor is detected in the patient. The model parameters used in the MHE, were
then estimated from the previous experiments (S0,S1, and S2) based on the methodology
described in Section 4.1.4, and their values can be found in Table 4.1. As indicated in the
in silico tests, the control penalization term was also reset to r = 1.

The algorithmic therapy was initiated individually when the tumor trigger became ac-
tive for the first time. Each mouse received administration on each Tuesday and Friday.
After day 65, the frequency of dosing was altered based on the tumor volume. When the
volume was under the tumor trigger for two consecutive weeks in a given subject, only a
single dose was administered weekly on Tuesday afterwards. If the tumor trigger was acti-
vated again (due to the insufficiency of a single weekly dose), the administration continued
twice per week. The reason for this change was that the frequent administrations ruined
the tail veins of the mice in the previous experiment.

The experiment was initiated on June 10, 2022, and is currently ongoing. At the time
of writing the thesis, S3,17 is still alive from the NMPC-MHE group. In Figures 5.6., 5.7.,
and 5.8. one can see the status of the experiment up to day 386, while the time series as-
sociated with the remaining subjects are presented in Appendix B. between Figures B.22.,
and B.39. Here, the labeling is omitted from the parameter estimation diagram since it
restricts the visibility of the results. For the parameters, a, b, n, w,ED50, and c, the colors
blue, red, yellow, purple, green, and turquoise are assigned, respectively. The parameter
estimation diagram does not contain the curves for k1 and k2, which were also estimated.
The underlying reason is that they remained constant in each case and had larger values
than the other parameters, so the variation of the rest of the parameters could have been
hard to comprehend in the diagrams.
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Figure 5.3: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S2,2. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure 5.4: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S2,5. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure 5.5: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S2,7. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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The results can be divided into three classes, each with unique dynamic behavior. The
algorithm worked as expected in the first case, as demonstrated in Figure 5.6. The mag-
nitude of the doses is proportional to tumor volume, which is in strong contrast with the
NMPC-MHE results in S2. Larger initial doses led to a strong remission in the subject,
followed by subsequent lower maintenance doses until drug resistance appeared. Note the
sudden increase in the computed doses at day 67 due to the change in the algorithm to
weekly dosing. One can also see that the parameter variations are less abrupt than in the
second experiment (c.f. Figure 5.4.). The same overall behavior can be seen in subjects S3,1,
S3,2, S3,3, S3,4, S3,6, S3,8, S3,9, S3,12, S3,13, S3,15, S3,16, and S3,19. In the case of S3,13, there was
a significant measurement error on day 24, but it had no adverse impact on the calculated
doses. Additionally, subject S3,8 is currently still alive, with no palpable tumor.

In the second case, different dynamics can be observed. Here, initial doses do not lead to
a longer remission period. Figure 5.8 shows the emergence of drug resistance immediately
after the first remission. One can see how the initially applied doses are insufficient to
significantly eradicate the tumor cells, leading to a fast adaptation to the drug by the
tumor. This is also apparent in the case of S3,7, S3,10, and S3,14. The same situation can
occur if the initial dose is large, but the subsequent administrations are too small, which
can be seen in the case of S3,10, S3,14, and S3,21.

In the third case, there is only one a single subject, S3,19, which can be seen in Figure
5.7. In this case, the magnitude of the subsequent doses was too large, leading to the
immediate termination of the mouse on day 98 due to systematic toxicity. In experiment S2,
the termination of subjects due to systematic toxicity was more prevalent, which indicates
progress in the current control design. Nevertheless, the death of this mouse indicates
that the constraint on the cumulated toxicity in the controller should be reworked in the
following designs.

Some remark must be taken on the quality of the estimations. As one can see, the
MHE could track the tumor volume evolution with minor errors, even in cases where re-
sistance occurred as opposed to the second implementation. The estimated time-varying
parameters also showed a decrease in variation. When the tumor volume stayed relatively
constant, so did the parameters, and vice-versa, but nothing conclusive can be drawn from
their individual values. In some instances, the parameter a, which captures the growth
rate of the tumor, increases when resistance emerges (S3,1,S3,21), and in some instances, it
declines (S3,6, S3,11).

Overall, the current experimental validation shows that the changes introduced in the
algorithm lead to increased performance compared to previous implementations. Death
caused by systematic toxicity is no longer prevalent among subjects. Additionally, the
computed doses align with the measured tumor volumes, which can be greatly attributed
to the lower variance in the estimated parameters.

5.5 Evaluation of the results

In order to verify the claims of the thesis group, a comparison must be made between the
standard and algorithmic therapies. Both the survival times tsurvival and the total admin-
istered drug dsum must be considered to evaluate the efficiency of the proposed algorithms.
In practice, such a comparison is challenging to conduct due to many interplaying factors
stemming from the biological nature of the experiments and the experimental setup. In
this section, the subjects that received the MHE-NMPC algorithmic therapies in S1 are
denoted by S1a, in S2 by S2a, and in S3 by S3a.
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Figure 5.6: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S3,5. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations produced by the MHE.
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Figure 5.7: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S3,19. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure 5.8: Evolution of the tumor volume, the corresponding doses, and the identified
time-varying parameters for S3,21. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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The first issue is that solely the survival times do not lead to a meaningful metric. The
tumor grows at a different rate in each mouse, which means that the time between the
implantation of the tumor and the first dose could be significant. Drug resistance causes
another major issue. A simple metric would be to take tsurvival and dsum, normalize them to
the same range, average their values among the subjects in the experiment, and compare
the final values across different groups. The problem is that different tumors react to
the drug vastly differently. For example, comparing the diagrams B.4, B.5, B.6, B.7, B.8,
B.9, B.10, and B.11 in Appendix B., one can see how the initial doses of 4 [mg/kg] lead
to different time intervals between the time of injection and the time of relapse (when
the tumor trigger becomes active again). A thorough understanding of drug resistance is
required to compensate for the variation in drug efficiency among the subjects, which is
currently unavailable.

Regarding the experiment setups, the following factors affect the comparison. First,
the experimental protocols are different, thus, it is hard to compare them directly. For
example, the NMPC-MHE therapy S1a only lasted for a month, contrary to S2a and S3a.
Also, in S2a, the therapies had to be stopped earlier than the termination of mice due to
ethical considerations arising from the toxicity levels of the mice. In S3a, weekly dosing was
introduced from day 67 to protect the tail vein of the mice. There is also some variation in
the applied doses between the baseline therapy S0 and the control group S2c. In S0 and
S3c, the standard protocol was used, while in S2c the doses were modified to 6 [mg/kg],
and there was no control group in S1. Additionally, the length, non-repeatability, and the
limited number of subjects in the experiments pose further difficulties in comparing the
results.

The current survival times and the sum of doses can be seen in Table 5.2 for S1a, Table
5.3 for S2c, Table 5.4 for S2a, Table 5.5 for S3c, and finally Table 5.6 for S3a.

Due to the significant variations between the therapeutic protocols, and the biological
nature of the experiments, two different comparisons were made regarding the third thesis
group. The first analysis was performed between the experiments S0, S2c, and S2a, while
the second involved S0, S3c, and S3a. These comparisons were performed using the Kaplan
Meier (KM) estimator, which is a nonparametric estimator of the survival function of the
subjects regarding an experiment [R66]. To compare the results of the algorithmic therapy
in the second experiment with the baseline therapy, the KM curves were generated from
the second dose of each experiment, excluding the effect of the identification dose. The
reason behind this choice was to only compare the effect of the algorithmically generated
doses on the survival times. In the case of the third experiment, the KM curves were
generated from the first administration, since no identification dose was present in this
case. The KM plots can be seen in Figures 5.9, and 5.10.

To statistically compare the KM curves, the logrank test was used [R67]. The logrank
test is a hypothesis test to compare the survival distributions of two samples, denoted
by lr(Si,Sj). The test provides a p value, which represents the likelihood that the two
distributions are different. In particular, the lower the p value, the more likely the dif-
ference between two distributions can be attributed to the nature of the therapies rather
than statistical fluctuations. In this dissertation, p values lower than 0.05 were considered
acceptable.

First, the second experiment was compared with its control group, as lr(S2c,S2a). The
logrank test resulted in p = 0.0002, which means that there is a high chance that the two
distributions are fundamentally different. Second, the two control groups were compared
as lr(S0,S2c), which resulted in p = 0.5974, showing no difference between the two con-
trol groups. Finally, the second experiment was compared with the baseline therapy as
lr(S0,S2a). This led to p = 0.0031, which indicates a difference between the baseline and
the algorithmic therapy.
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Table 5.1: Logrank test p values for each experiment.

lr(S2c,S2a) lr(S0,S2c) lr(S0,S2a) lr(S3c,S3a) lr(S0,S3c) lr(S0,S3a)

p 0.0002 0.5974 0.0031 0.809 0.2052 0.1614

Regarding the third experiment, similar tests were made between the groups. The
first comparison was made between the control group and the algorithmic therapy, i.e.
lr(S3c,S3a), which resulted in p = 0.809. This indicates that there is essentially no differ-
ence between the standard and the algorithmic therapy using the logrank test. The second
comparison was between the baseline therapy and the control group as lr(S0,S3c), which
resulted in p = 0.2052. The last test was done between the baseline experiment and the
algorithmic therapy as lr(S0,S3a), where the result was p = 0.1614. While this p value is
lower than the one obtained between the algorithmic therapy and the control group, it still
indicates no difference between the therapies.

The logrank test showed that in the case of the MHE-NMPC approach in the second
experiment, the algorithmic therapy can prolong the overall survival of mice. Contrary to
this result, the algorithmic therapy in the third experiment has not performed satisfactory
according to the logrank test. There are a number of reasons which might attribute to this
result. As it was described in Section 5.4., small starting doses often led to drug resistance
quickly. If the algorithm starts with a large initial dose each time, the survival of the mice
could be improved. In the second experiment, 13 mice received starting doses between 5−6
[mg/kg], while in the third experiment, only 7 mice received more than 5 [mg/kg], which
could attribute to the short survival time of these subjects. Moreover, the introduction of
the weekly dosing might have altered the effectiveness of the algorithmic therapy, which
requires further investigation. Additionally, the subjects in the control group of the third
experiment had more durable response to the standard therapy than the subjects in the
baseline experiment. While the logrank test showed no difference between the two groups,
the calculated value p = 0.2052 shows low similarity between the two survival curves.

The logrank test is also unable to account for long term survivals. In particular, sub-
ject S3,8 is still living, with no palpable tumor. While this is only 4.76% of all the mice in
the algorithmic group, it is still a significant achievement. The reason is that such a long
overall survival has not been reported previously in the literature via conventional therapy
using the same drug and targeting the same tumor variant. In a clinical setting, even the
slightest chance of durable survival is considerable. Additionally, this is achieved by ap-
plying lower doses, which mitigates the side effects during the treatment, thus, improving
the quality of life of the patient. In summary, even if the logrank test do not show any sig-
nificant difference between the two groups, the lower side effects and the small chance of
a durable survival could make the algorithm applicable with small adjustments regarding
the magnitude of the initial dose.

The results confirm the claims of the thesis group. The first iteration of the algorithm
was indeed able to induce remission of the subjects, and the amount of the administered
dose was in the same range as it would be in the case of the standard protocol. In the case
of the second implementation, the algorithm outperformed both the control group and the
baseline therapy. Nevertheless, additional improvements must be made in the future so
that the early onset of drug resistance can be avoided entirely, as could be seen in the third
experiment.



82 5. Experimental validation

Table 5.2: Sum of doses [mg/kg] and survival times [day] of the MHE-NMPC algorithm
treated subjects in the first experiment.

S1,1 S1,2 S1,3 S1,5 S1,6

dsum 14.2 10.73 12.27 13.18 17.36
tsurvival 102 112 112 165 93

Table 5.3: Sum of doses [mg/kg] and survival times [day] of the subjects in the control
group of the second experiment.

S2c,1 S2c,2 S2c,3 S2c,4 S2c,5 S2c,6 S2c,7

dsum 36 30 6 30 36 24 36
tsurvival 93 154 89 196 154 112 152

Table 5.4: Sum of doses [mg/kg] and survival times [day] of the MHE-NMPC algorithm
treated subjects in the second experiment.

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6 S2,7

dsum 70.09 63.41 83.91 76.99 75.01 73.88 57.74
tsurvival 131 166 124 191 198 194 166

S2,8 S2,9 S2,10 S2,11 S2,12 S2,13 S2,14

dsum 66.51 48.37 93.32 108.98 73.75 80.85 71.44
tsurvival 159 89 341 313 348 223 191

S2,15 S2,16 S2,17 S2,18 S2,19 S2,20 S2,21

dsum 95.8 77 88.36 51.03 50.08 85.68 81.68
tsurvival 292 168 168 82 159 229 348

Table 5.5: Sum of doses [mg/kg] and survival times [day] of the subjects in the control
group of the third experiment.

S3c,1 S3c,2 S3c,3 S3c,4 S3c,5 S3c,6

dsum 48 40 48 48 48 48
tsurvival 231 185 306 220 220 234

S3c,7 S3c,8 S3c,9 S3c,10 S3c,11 S3c,12

dsum 24 24 48 32 32 48
tsurvival 82 91 262 115 133 234
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Figure 5.9: Kaplan Meier curves, associated with the first comparison, where the curves
were generated assuming t = 0 to be the day of the second administration for each subject.
The blue curve corresponds to the baseline experiment S0, the red curve to the control
group S2c, and the yellow curve to the MHE-NMPC algorithm in the second experiment
S2a.
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Figure 5.10: Kaplan Meier curves, associated with the second comparison, where the
curves were generated assuming t = 0 to be the day of the first administration for each
subject. The blue curve corresponds to the baseline experiment S0, the red curve to the
control group S3c, and the yellow curve to the MHE-NMPC algorithm in the third experi-
ment S3a. The end of the yellow curve represents subject S3,8, which is currently still alive.
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Table 5.6: Sum of doses [mg/kg] and survival times [day] of the MHE-NMPC algorithm
treated subjects in the third experiment, up to day 386.

S3,1 S3,2 S3,3 S3,4 S3,5 S3,6 S3,7

dsum 67.92 70.2 63.94 70.6 63.59 32.78 62.55
tsurvival 157 271 157 229 213 185 108

S3,8 S3,9 S3,10 S3,11 S3,12 S3,13 S3,14

dsum 21.35 46.76 72.02 87.85 36.56 40.84 72.04
tsurvival - 157 122 255 213 227 131

S3,15 S3,16 S3,17 S3,18 S3,19 S3,20 S3,21

dsum 85.84 106.42 70.57 50.87 73.38 71.89 68.58
tsurvival 168 285 294 117 98 140 122



6
Conclusions

In my dissertation, I described the development of a fully automated tumor regulation al-
gorithm on the basis of different control techniques. I have investigated the use of the
RFPT method, for which I have developed different strategies based on the IO lineariza-
tion principle. While the method has promising applications in other technical domains,
unfortunately, it did not bring the expected performance benefits for the tumor growth
regulation problem.

As a consequence, an NMPC was designed through multiple implementations in con-
junction with an MHE. In order to properly tune the MHE, I have implemented the cor-
responding FIE, which was able to provide reliable initial parameter estimates for the
SAEM method. Using the MHE, I have also introduced time-varying model parameters,
which has significantly improved the prediction performance of the model. In addition, a
special emphasis were taken on constraining the parameter values, such that they describe
physiologically feasible tumor behavior.

To generate the optimal administration protocols, several NMPC implementations were
carried out. In the first implementation the DMS approach was used, which was then
tested both in silico and in vivo. The algorithm had to be tuned manually for each identi-
fied parameter set, which was a major drawback during the in vivo validation. This issue
was solved in the second implementation, where an automated tuning procedure was in-
troduced and a number of modifications were applied on the optimization problem. The
experimental validation of the second controller showed, that while it was successful in
extending the overall survival of the group, the consistency of the applied dosages was un-
satisfactory. The issues present in the second experiment then were solved in the third
implementation of the controller, where the MHE was completely redesigned to eliminate
the large variation between the computed time-varying model parameters. Modifications
were also introduced in the NMPC design, and the combined approach is currently tested
in silico. The obtained result at this point indicate, that the current design was able to
solve all the previous problems and can operate in a fully automated manner.

There is a large number of possible research directions in the future. The first and
foremost important is the investigation of possible application of the algorithm in clinical
use. Since caliper measurements can not be used in human trials due to the location of the
tumor, alternative measurement devices must be taken into account. The majority of imag-
ing techniques are expensive and time consuming to be used frequently, additional research
should be conducted where the measurements are taken weekly or even more sparsely. A
possible adaptation strategy in human use would be the optimization of a regular course
of therapy. This means that the medical professionals determine the measurement and
administration time instances, as in the case of a conventional chemotherapy, for which
the algorithm computes the state estimates and the optimized doses. In the near future,
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86 6. Conclusions

additional measurement channels might be available, which can significantly improve the
estimation of the model parameters. In particular, measuring the concentration of drug in
the blood during the experiment without sacrificing the animal would greatly improve the
estimation of the pharmacokinetic parameters in the model. Measuring different tumor
markers would also be beneficial because they allow more frequent tumor size measure-
ment. Furthermore, different tumor variants and chemotherapeutic agents should also
be tested. In principle, the flexibility of the model and the handling of time-varying pa-
rameters should permit the algorithm to be used for the treatment of different tumors by
tailoring the model parameters to these cases.



Appendix A
Discrete time terms

hr(x, u) = (−(−1 + ∆tw)3)x2 + (x1((−a)b2c∆t4x23 − b2c∆t4wx23 + abc∆t3x3(ED50 + x3)

+ a2bc∆t4x3(ED50 + x3)− abc∆t4nx3(ED50 + x3) + bc∆t3wx3(ED50 + x3)

+ abc∆t4wx3(ED50 + x3)− bc∆t4nwx3(ED50 + x3) + ab2∆t4ux3(Kb + x3)

+ b2∆t4uwx3(Kb + x3) + ab2∆t3x23(Kb + x3) + b2∆t3wx23(Kb + x3)

− ab∆t3u(ED50 + x3)(Kb + x3)− a2b∆t4u(ED50 + x3)(Kb + x3)

+ ab∆t4nu(ED50 + x3)(Kb + x3)− b∆t3uw(ED50 + x3)(Kb + x3)

− ab∆t4uw(ED50 + x3)(Kb + x3) + b∆t4nuw(ED50 + x3)(Kb + x3)

− ab∆t2x3(ED50 + x3)(Kb + x3)− a2b∆t3x3(ED50 + x3)(Kb + x3)

+ ab∆t3nx3(ED50 + x3)(Kb + x3)− b∆t2wx3(ED50 + x3)(Kb + x3)

− ab∆t3wx3(ED50 + x3)(Kb + x3) + b∆t3nwx3(ED50 + x3)(Kb + x3)

− 2ab∆t2x3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− a2b∆t3x3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ ab∆t3nx3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− 2b∆t2wx3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ b∆t3nwx3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ b∆t3w2x3((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ (ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ 3a∆t(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ 3a2∆t2(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ a3∆t3(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− 3a∆t2n(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− 2a2∆t3n(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ a∆t3n2(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− 3∆t2nw(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

− a∆t3nw(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ ∆t3n2w(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))

+ ∆t3nw2(ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))))

/((ED50 + x3)((−c)∆tx3 + ED50(Kb + x3) + ∆tu(Kb + x3) + x3(Kb + x3))),
(A.1)

87



u = Ψ(x, y(k + r)) = −(((−v + (1 + a3∆t3 + a2∆t2(3− 2b∆t− 2∆tn) + b2∆t3w

− 3∆t2nw +∆t3n2w +∆t3nw2 + b∆t2w(−3 + ∆t(2n+ w)) + a∆t(3 + b2∆t2

− 3∆tn+∆t2n(n− w) + b∆t(−3 + 2∆tn−∆tw)))x1 − (−1 + ∆tw)3x2)(c∆t

−Kb− x3)x
2
3 + ED2

50(v − (1 + a3∆t3 + a2∆t2(3− 2∆tn) + a∆t(3− 3∆tn

+∆t2n(n− w))− 3∆t2nw +∆t3nw(n+ w))x1 + (−1 + ∆tw)3x2)(Kb+ x3)

+ ED50x3(c∆t(−v + (1 + a3∆t3 − a2∆t2(−3 + b∆t+ 2∆tn) + a∆t(3− 3∆tn

+ b∆t(−1 + ∆t(n− w)) + ∆t2n(n− w))− b∆t2w − 3∆t2nw + b∆t3nw +∆t3n2w

+∆t3nw2)x1 − (−1 + ∆tw)3x2) + (2v − (2 + 2a3∆t3 − 2a2∆t2(−3 + b∆t+ 2∆tn)

− 6∆t2nw + 2∆t3nw(n+ w) + b∆t2w(−3 + ∆t(2n+ w)) + a∆t(6− 6∆tn

+ 2∆t2n(n− w) + b∆t(−3 + 2∆tn−∆tw)))x1 + 2(−1 + ∆tw)3x2)(Kb+ x3)))

/(∆t(Kb+ x3)(ED50(v − (1 + a3∆t3 − a2∆t2(−3 + b∆t+ 2∆tn) + a∆t(3− 3∆tn

+ b∆t(−1 + ∆t(n− w)) + ∆t2n(n− w))− b∆t2w − 3∆t2nw + b∆t3nw

+∆t3n2w +∆t3nw2)x1 + (−1 + ∆tw)3x2) + (v − (1 + a3∆t3 + a2∆t2(3− 2b∆t

− 2∆tn) + b2∆t3w − 3∆t2nw +∆t3n2w +∆t3nw2 + b∆t2w(−3 + ∆t(2n+ w))

+ a∆t(3 + b2∆t2 − 3∆tn+∆t2n(n− w) + b∆t(−3 + 2∆tn−∆tw)))x1

+ (−1 + ∆tw)3x2)x3)))

(A.2)

Appendix B
Experimental diagrams
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Figure B.1: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S1,2. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.2: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S1,5. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.3: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S1,6. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.4: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,1. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.5: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,3. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.6: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,4. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.



95

0 20 40 60 80 100 120 140 160 180
0

5

10

15

·102

Time [day]

M
ea

su
re

d
vo

lu
m

e
[m

m
3 ]

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

Time [day]

D
os

e
[m

g/
kg

]

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

Time [day]

Pa
ra

m
et

er
s

a
b
n
w

Figure B.7: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,6. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.8: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,8. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.9: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,9. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.10: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,10. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.11: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,11. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.12: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,12. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.13: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,13. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.14: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,14. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.15: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,15. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.16: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,16. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.17: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,17. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.18: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,18. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.19: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,19. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.20: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,20. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.21: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S2,21. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE.
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Figure B.22: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,1. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.23: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,2. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.24: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,3. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.



113

0 20 40 60 80 100 120 140 160 180 200 220
0

10

20

30

·102

Time [day]

T
um

or
vo

lu
m

e
[m

m
3 ]

0 20 40 60 80 100 120 140 160 180 200 220
0

1

2

3

4

5

Time [day]

D
os

e
[m

g/
kg

]

0 20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

Time [day]

Pa
ra

m
et

er
s

[-
]

Figure B.25: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,4. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.26: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,6. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.27: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,7. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.28: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,8. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.29: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,9. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.30: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,10. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.31: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,11. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.32: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,12. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.33: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,13. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.34: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,14. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.35: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,15. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.36: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,16. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.37: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,17. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.38: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,18. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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Figure B.39: Evolution of the tumor volume, the corresponding doses and the identified
time-varying parameters for S3,20. The red crosses represent the tumor volume measure-
ments, while the black dots show their estimations, produced by the MHE. For the param-
eters a, b, n, w,ED50 and c in the bottom figure, the colors blue, red, yellow, purple, green,
and turquoise are assigned, respectively.
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